Analytical solutions of the null-geodesics in Ellis-Bronnikov wormhole spacetime via exp(-\Phi(\xi))-expansion method
Abstract
In this article, we use the so-called exp(-\Phi(\xi))-expansion method to obtain some specific classes of one-parameter exact solutions of null-geodesics in the Ellis- Bronnikov wormhole metric. In the first stage of this method, the nonlinear PDE is converted into a nonlinear ordinary derivative equation (ODE) of polynomial form. Therefore, if we initially have a nonlinear ODE of polynomial form, sometimes its solutions can be obtained using the procedure of the exp(-\Phi(\xi))-expansion method. In our paper, this method allows us to obtain some exact analytical solutions to null-geodesic equations in the Ellis-Bronnikov wormhole metric, expressed in the elementary functions.
Keywords
Full Text:
DOWNLOAD PDFReferences
S. Weinberg, Gravitation and Cosmology: Principles and Applications of The General Theory of Relativity (John Wiley. Press, New York, 1972).
M. Visser, L. Wormholes, From Einstein to Hawking (American Institute of Physics, New York, 1996).
H. G. Ellis, Ether flow through a drainhole: A particle model in general relativity, J. Math. Phys. 14, 104 (1973). https://doi.org/10.1063/1.1666161
K. A. Bronnikov,Scalar-tensor theory and scalar charge, Acta Phys. Pol. B 4, 251 (1973).
M. S. Morris and K. S. Thorne, Wormholes in Spacetime and Their Use for Interstellar Travel: A Tool for Teaching General Relativity, Am. J. Phys. 56, 395 (1988). https://doi.org/10.1119/1.15620
M. S. Morris, K. S. Thorne and U. Yurtsever, Wormholes, Time Machines, and the Weak Energy Condition, Phys. Rev. Lett. 61, 1446 (1988). https://doi.org/10.1103/PhysRevLett.61.1446
I. D. Novikov, N. S. Kardashev, A. A. Shatskii, The multicomponent Universe and the astrophysics of wormholes, UFN, Vol.177, Number 9, 1017 (2007). https://doi.org/10.3367/UFNr.0177.200709g.1017
K. A. Bronnikov, L. N. Lipatova, I. D. Novikov, et al., Example of a stable wormhole in general relativity, Grav, Cosmol. 19, 269 (2013). https://doi.org/10.1134/S0202289313040038
P. D. Roy, S. Aneesh, S, Kar, Revisiting a family of wormholes: geometry, matter, scalar quasinormal modes and echoes. , Eur. Phys. J. C 80, 850 (2020). https://doi.org/10.1140/epjc/s10052-020-8409-5
A. Mishra, S. Chakraborty, On the trajectories of null and timelike geodesics in different wormhole geometries, Eur. Phys. J. C 78, 374 (2018). https://doi.org/10.1140/epjc/s10052-018-5854-5
F. Willenborg, S.Grunau, B. Kleihaus, and J. Kunz, Geodesic motion around traversable wormholes supported by a massless conformally coupled scalar field, Phys. Rev. D 97, 124002 (2018). https://doi.org/10.1103/PhysRevD.97.124002
I. Potashov, J. Tchemarina and A. Tsirulev, Null and Timelike Geodesics near the Throats of Phantom Scalar Field Wormholes, Universe 6(10), 183 (2020). https://doi.org/10.3390/universe6100183
B. Ghosh, S. Dutta, S. Mukerji, S. Chakraborty, Static spherically symmetric wormhole with quadratic shape function and particle trajectories around it, Int.J.Mod.Phys.A, 36(06), 2150046 (2021). https://doi.org/10.1142/S0217751X21500469
G. Panotopoulos, A. Rincon , and I. Lopes, Orbits of light rays in scale-dependent gravity: Exact analytical solutions to the null geodesic equations, Phys. Rev. D 103, 104040 (2021). https://doi.org/10.1103/PhysRevD.103.104040
V. Sharma, S. Ghosh, Geodesics in Generalised Ellis-Bronnikov Spacetime Embedded in Warped 5D Background, Eur. Phys. J. C 82, 702 (2022). https://doi.org/10.1140/epjc/s10052-022-10682-6.
M. Wang, Y. Zhou, Z. Li, Application of a Homogeneous Balance Method to Exact Solutions of Nonlinear Equations in Mathematical Physics, Phys. Lett. A 216(1-5), 67-75 (1996). https://doi.org/10.1016/0375-9601(96)00283-6
E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A 246(5), 403-406 (1998). https://doi.org/10.1016/S0375-9601(98)00547-7
A. M. Wazwaz, The tanh and the sine-cosine methods for a reliable treatment of the modified equal width equation and its variants, Communications in Nonlinear Science and Numerical Simulation, 11(2), 148-160 (2006). https://doi.org/10.1016/j.cnsns.2004.07.001
E. Yusufoglu, A. Bekir, Solitons and periodic solutions of coupled nonlinear evolution equations by using the sine-cosine method, Int. J. Comp. Math. 83(12), 915-924 (2006).
M. A. E. Abdelrahman, E. H. M. Zahran, M. M. A. Khater, The -Expansion Method and Its Application for Solving Nonlinear Evolution Equations, Int. J, Modern Nonlinear Theory and Application 4, 37 (2015). https://doi.org/10.4236/ijmnta.2015.41004
M. Wang and X. Li, Applications of F-expansion to periodic wave solutions for a new Hamiltonian amplitude equation, Chaos, Solitons Fract. 24, 1257-1268 (2005). https://doi.org/10.1016/j.chaos.2004.09.044
C. Dai, J. Zhang, Jacobian elliptic function method for nonlinear differential-difference equations, Chaos, Solitons Fract. 27(4), 1042-1047 (2006). https://doi.org/10.1016/j.chaos.2005.04.071
S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A 289(1), 69-74 (2001). https://doi.org/10.1016/S0375-9601(01)00580-1
M.H. Liu, and Y.G. Zheng, New Solutions for an Elliptic Equation Method and Its Applications in Nonlinear Evolution Equations, J. Appl. Math. and Phys. 10, 2415-2431 (2022). https://doi.org/10.4236/jamp.2022.108164
M. Wang, X. Li, J. Zhang, The (G'/G)-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics, Phys. Lett. A 372, 417-423 (2008). https://doi.org/10.1016/j.physleta.2007.07.051
J. Zhang, X. Wei and Y. Lu, A generalized (G'/G)-expansion method and its applications, Phys. Lett. A 372, 3653-3658 (2008). https://doi.org/10.1016/j.physleta.2008.02.027
J. Zhang, F. Jiang and X. Zhao, An improved (G'/G)-expansion method for solving nonlinear evolution equations, Int. J. Comput. Math. 87(8), 1716-1725 (2010). https://doi.org/10.1080/00207160802450166
V. K. Shchigolev, Exact solutions to the null-geodesics in Ellis-Bronnikov wormhole spacetime via (G'/G)-expansion method, Modern Physics Letters A, Vol. 37, No. 20, 2250124, 2022. https://doi.org/10.1142/S0217732322501243
V. K. Shchigolev, Exact analytical solutions to the geodesic equations in general relativity via (G'/G) - expansion method, Gen Relativ Gravit, Vol. 54, 78. 2022. https://doi.org/10.1007/s10714-022-02964-x
N. Tsukamoto, Strong deflection limit analysis and gravitational lensing of an Ellis wormhole, Phys. Rev. D 94, 124001 (2016). https://doi.org/10.1103/PhysRevD.94.124001
Ya-Peng Hu, Hongsheng Zhang, Jun-Peng Hou, and Liang-Zun Tang, Perihelion Precession and Deflection of Light in the General Spherically Symmetric Spacetime, Adv.High Energy Phys. 2014, 604321 (2014). https://doi.org/10.1155/2014/604321
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN: 2394-3688
© Science Front Publishers