Ab initio study of effect of pressure on structural and elastic properties of CaX, X = {O, S, Se}

Ibrahim Isah, Sani Abdulkarim, Salisu I. Kunya

Abstract


We present density function theory study of effect of pressure on structural, elastic and electronics properties of compounds CaX (X=O, S and Se) within the generalized gradient approximation. The results presented for transition pressure, elastic parameters and band structures are in good agreement with the available literature. We also present the effect of pressure on these parameters. The generalized stability criteria show that CaSe is not stable above pressure of 29GPa and all the material CaX are not stable at B2 phase. The materials are brittle at equilibrium but this changes with pressure change. They are also generally anisotropic; CaO(B1) was found to be Isotropic at pressure of 12.5GPa. Finally, the band-gap of all the material around (Γ - X)  decreased with pressure, all the material became indirect band-gap semiconductor at high pressure and CaSe undergoes a semiconductor-metal transition at pressure of 68 GPa.

Full Text:

DOWNLOAD PDF

References


J. Singh, M. Goyal, and S. S. Verma, “Thermoelectric Properties of CaSe and CaTe Calculated by Density Functional Theory: An Approach to Overcome the World Energy Crisis,†2019 IEEE 2nd Int. Conf. Renew. Energy Power Eng. REPE 2019, pp. 208–211, 2019, doi: 10.1109/REPE48501.2019.9025139.

S. C. Rakesh Roshan, L. Kunduru, N. Yedukondalu, and M. Sainath, “Structure and lattice dynamics of calcium chalcogenides under high pressure,†Mater. Today Proc., vol. 5, no. 9, pp. 18874–18878, 2018, doi: 10.1016/j.matpr.2018.06.235.

I. Journal et al., “Ab initio electronic band structure calculations for calcium monochalcogenides,†vol. 12, pp. 1709–1717, 1998.

T. Fan, H. Xiao, and P. Tang, “High-throughput first-principle calculations of the structural , mechanical , and electronic properties of cubic XTiO 3 ( X = Ca , Sr , Ba , Pb ) ceramics under high pressure,†vol. 3, no. January, 2020, doi: 10.1002/qua.26168.

I. Chung and M. G. Kanatzidis, “Metal chalcogenides: A rich source of nonlinear optical materials,†Chem. Mater., vol. 26, no. 1, pp. 849–869, 2014, doi: 10.1021/cm401737s.

M. M. Abdus Salam, “Theoretical study of CaO, CaS and CaSe via first-principles calculations,†Results Phys., vol. 10, no. August, pp. 934–945, 2018, doi: 10.1016/j.rinp.2018.07.042.

S. Boucenna, Y. Medkour, L. Louail, M. Boucenna, A. Hachemi, and A. Roumili, “High pressure induced structural , elastic and electronic properties of Calcium Chalcogenides CaX ( X = S , Se and Te ) via first-principles calculations,†Comput. Mater. Sci., vol. 68, pp. 325–334, 2013, doi: 10.1016/j.commatsci.2012.11.004.

J. H. Song, A. J. Freeman, T. K. Bera, I. Chung, and M. G. Kanatzidis, “First-principles prediction of an enhanced optical second-harmonic susceptibility of low-dimensional alkali-metal chalcogenides,†Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 24, pp. 3–8, 2009, doi: 10.1103/PhysRevB.79.245203.

RafikMaizi, A. G. Boudjahem, and M. Boulbazine, “First-Principles Investigations on Structural, Elastic, and Thermodynamic Properties of CaX (X = S, Se, and Te) under Pressure,†Russ. J. Phys. Chem. A, vol. 93, no. 13, pp. 2726–2734, 2019, doi: 10.1134/S0036024419130181.

M. Goyal and M. M. Sinha, “Study of phonon dynamics of calcium chalcogenides from first principles method,†Mater. Today Proc., vol. 21, pp. 2059–2065, 2020, doi: 10.1016/j.matpr.2020.01.324.

D. Heciriet al., “First-principles elastic constants and electronic structure of beryllium chalcogenidesBeS, BeSe and BeTe,†Comput. Mater. Sci., vol. 38, no. 4, pp. 609–617, 2007, doi: 10.1016/j.commatsci.2006.04.003.

D. Rachedet al., “First-principle study of structural, electronic and elastic properties of beryllium chalcogenidesBeS, BeSe and BeTe,†Comput. Mater. Sci., vol. 37, no. 3, pp. 292–299, 2006,

R. Khenata, A. Bouhemadou, M. Hichour, H. Baltache, D. Rached, and M. Rérat, “Elastic and optical properties of BeS, BeSe and BeTe under pressure,†Solid. State. Electron., vol. 50, no. 7–8, pp. 1382–1388, 2006, doi: 10.1016/j.sse.2006.06.019.

C. Kürkçü, “High-pressure structural phase transitions , electronic properties and intermediate states of the CaSe,†pp. 1–21.

F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,†Phys. Rev. B - Condens. Matter Mater. Phys., vol. 90, no. 22, pp. 0–3, 2014, doi: 10.1103/PhysRevB.90.224104.

P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009)

P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017);

URL http://www.quantum-espresso.org,

Hoss B., Ebrahim F, Fatemech B., Hydraulic fracturing in unconventional reservoirs (second editions) 2019.

M. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 2003, 68, 184108.

H. Z. Fu, D. H. Li, F. Peng, T. Gao, X. L. Cheng, Comput. Mater. Sci. 2008, 44, 774.

D. Iotova, N. Kioussis, S. P. Lim, Phys. Rev. B 1996, 54, 14413.

J. Wang et al., Phys. Rev. Lett. 71 (25) (1993) 4182.

Mammone J, Mao H, Bell P. Equations of state of CaO under static pressure conditions. Geophys. Res. Lett. 1981;8:140–2

Richet P, Mao HK, Bell PM. Static compression and equation of state of CaO to 1.35Mbar. J Geophys Res: Solid Earth 1988;15279–88.

Karki BB, Crain J. Structure and elasticity of CaO at high pressure. J GeophysRes:Solid Earth 1998;103:12405–11

Springborg M, Taurian O. Self-consistent electronic structures of CaO and BaO. JPhys C: Solid State Phys 1986;19:6347

Dovesi R, Roetti C, Freyria-Fava C, Apra E, Saunders V, Harrison N. Ab initioHartree-Fock treatment of ionic and semi-ionic compounds: state of the art. PhilosTrans Roy SocLond A: Math Phys Eng Sci 1992;341:203–10

Luo H, Greene RG, Ghandehari K, Li T, Ruoff AL. Structural phase transformations and the equations of state of calcium chalcogenides at high pressure. Phys Rev B 1994;50:16232

Ekbundit S, Chizmeshya A, LaViolette R, Wolf GH. Theoretical and experimental investigation of the equations of state and phase stabilities of MgS and CaS. J Phys: Condens Matt 1996;8:8251

Charifi Z, Baaziz H, Hassan FEH, Bouarissa N. High pressure study of structural and electronic properties of calcium chalcogenides. J Phys: Condens Matt 2005;17:4083

Cortona P, Masri P. Cohesive properties and behaviour under pressure of CaS, CaSe, and CaTe: results of ab initio calculations. J Phys: Condens Matter 1998;10:8947.

Marinelli F, Lichanot A. Elastic constants and electronic structure of alkaline-earth chalcogenides, Performances of various hamiltonians. ChemPhysLett 2003;367:430–8

Straub GK, Harrison WA. Self-consistent tight-binding theory of elasticity in ionic olids. Phys Rev B 1989;39:10325

Rodríguez-Hernández P, Radescu S, Muñoz A. Relative stability of calcium chalcogenides from ab initio theory. Int J High Pressure Res 2002;22:459–63

Mehl M, Cohen R, Krakauer H. Linearized augmented plane wave electronic structure calculations for MgO and CaO. J Geophys Res: Solid Earth 1988;93:8009–22.

Mehl M, Hemley R, Boyer L. Potential-induced breathing model for the elastic moduli and high-pressure behavior of the cubic alkaline-earth oxides. Phys Rev B 1986;33:8685.

Bukowinski M. First principles equations of state of MgO and CaO. Geophys Res Lett 1985;12:536–9.

Zhang H, Bukowinski M. Modified potential-induced-breathing model of potentials between close-shell ions. Phys Rev B 1991;44:2495.

Khenata R, Sahnoun M, Baltache H, Rérat M, Rached D, Driz M, Bouhafs B. Structural, electronic, elastic and high-pressure properties of some alkaline-earth chalcogenides: an ab initio study. Physica B: Condens Matt 2006;371:12–9

Labidi S, Boudjendlia M, Labidi M, Bensalem R. First principles calculations of the structural, elastic, and thermal properties of the rocksaltCaX (X = S, Se, Te). Chinese J Phys 2014;52:1081–90

Charifi Z, Baaziz H, Hassan FEH, Bouarissa N. High pressure study of structural and electronic properties of calcium chalcogenides. J Phys: Condens Matt 2005;17:4083.

G. Megha, M. Sinha, Study of Phonon Dynamics of Calcium Chalcogenides from First principles method

R. Khenata, M. Sahawun, H. Baltash, J. Rarat, D. Rachl, M. Driz and VB. Bouhafs, physical B 371 (2006)12

Yamashita J, Asano S. Cohesive properties of alkali halides and simple oxides in the local-density formalism. J PhysSocJpn 1983;52:3506–13

Bayrakci M, Colakoglu K, Deligoz E, Ciftci Y. A first-principle study of the structural and lattice dynamical properties of CaX (X= S, Se, and Te). High Pressure Res

Chang Z, Graham E. Elastic properties of oxides in the NaCl-structure. J PhysChem Solids 1977;38:1355–62

R. Khenata, M. Sahnoun, H. Baltache, M. Rerat, D. Rached, M. Driz, and B. Bouhafs, Physica B 371 (2006) 12

Son P, Bartels R. CaO and SrO single crystal elastic constants and their pressure derivatives. J PhysChem Solids 1972;33:819–28.

Dragoo AL, Spain IL. The elastic moduli and their pressure and temperature derivatives for calcium oxide. J PhysChem Solids 1977;38:705–10.

D'Arco P, Jolly L-H, Silvi B. Periodic Hartree-Fock study of B1⇌ B2 reactions: phase transition in CaO. Phys Earth Planetary Interiors 1992;72:286–98.

Marinelli F, Lichanot A. Elastic constants and electronic structure of alkaline-earth chalcogenides, Performances of various hamiltonians. ChemPhysLett 2003;367:430–8.

Straub GK, Harrison WA. Self-consistent tight-binding theory of elasticity in ionic solids. Phys Rev B 1989; 39:10325.

Maizi, R. Abdul-Ghani, B. and Mouhsin, B. First principle investigation of structural, elastic and thermodynamic properties of CaX, X=(S, Se and Te) under pressure, Russian Journal of Physical Chemistry A, 2020; Vol. 93, Issue 13, p.2726-2734

Rakash, S. C. Lavanya, K. Yedakondehu, N. and Samath, M. Structural and lattice Dynamics of calcium Chalcogenides under high pressure, Materials Today: Proceedings, 2018, Vol 5, Issue 9, Part 3, 18874-18878

Asano S, Yamashita N, Nakao Y. Luminescence of the Pb2+-ion dimer center in CaS and CaSe phosphors. Phys. Status Solidi 1978; 89:663–73.

Stepanyuk V, Szász A, Farberovich O, Grigorenko A, Kozlov A, Mikhailin V. An electronic band structure calculation and the optical properties of alkaline-earth sulphides. Physics Status Solidi (b) 1989;155:215–20

Ching W, Gan F, Huang M-Z. Band theory of linear and nonlinear susceptibilities of some binary ionic insulato. Phys Rev B 1995;52:1596

Jha PK, Sanyal SP. Structural phase transformation and equation of state of calcium chalcogenides at high pressure. Physica Status Solidi (b) 1999;212:241–6.

Hoss B., Fatemech B., Hydraulic fracturing in unconvential serrvior (second editions) 2019.

M. Mattesini, R. Ahuja, B. Johansson, Phys. Rev. B 2003, 68, 184108.

H. Z. Fu, D. H. Li, F. Peng, T. Gao, X. L. Cheng, Comput. Mater. Sci. 2008, 44, 774. S. F. Pugh, Philos. Mag. 1954, 45, 823

Yun-Dong Guo, Ze-Jin Yang, Qing-He Gao, Zi-Jiang Liu, Wei. Dai, J. Phys.: Condens. Matter 20 (2008) 115203


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers