### A new look at the quantum Liouville theorem

#### Abstract

#### Keywords

#### Full Text:

DOWNLOAD PDF#### References

J. von Neumann,â€œWahrscheinlichkeitstheoretischer Aufbau der Quantenmechanikâ€, Nachr. Ges. Wiss. GÃ¶ttingen, 1, 245-272 (1927).

D. F. Styer, M. S. Balkin, K. M. Becker, M. R. Burns, C. E. Dudley, S. T. Forth, â€œNine formulations of quantum mechanicsâ€, American Journal of Physics, 70 (3), 288-297 (2002).

S. Weinberg, â€œQuantum mechanics without state vectorsâ€, Physical Review A, 90 (4), 042102 (2014).

https://en.wikipedia.org/wiki/Density_matrix

See, e.g., J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd Ed. (Cambridge University Press, 2017) p. 185

J. Snygg, â€œThe Heisenberg picture and the density operatorâ€, American Journal of Physics, 50 (10), 906-909(1982).

R. L. Liboff, â€œQuantum equations of motion and the Liouville equationâ€, Foundations of Physics, 17 (10), 981-991 (1987).

See, e.g., P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, 2nd Ed. (Tata McGraw Hill, New Delhi, 2010) p. 384

This includes the text by one of the authors: G. J. Ni and S. Q. Chen, Advanced Quantum Mechanics, (Rinton Press, New Jersey, 2003) p. 18 and p. 196

E. Merzbacher, Quantum Mechanics, 3rd Ed. (Wiley, New York, 1998)

P. A. M. Dirac, â€œThe basis of statistical quantum mechanicsâ€, Proceedings of the Cambridge Philosophical Society, 25 (1), 62-66 (1929)

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

Â© Science Front Publishers