A new look at the quantum Liouville theorem
Abstract
Keywords
Full Text:
DOWNLOAD PDFReferences
J. von Neumann,“Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanikâ€, Nachr. Ges. Wiss. Göttingen, 1, 245-272 (1927).
D. F. Styer, M. S. Balkin, K. M. Becker, M. R. Burns, C. E. Dudley, S. T. Forth, “Nine formulations of quantum mechanicsâ€, American Journal of Physics, 70 (3), 288-297 (2002).
S. Weinberg, “Quantum mechanics without state vectorsâ€, Physical Review A, 90 (4), 042102 (2014).
https://en.wikipedia.org/wiki/Density_matrix
See, e.g., J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd Ed. (Cambridge University Press, 2017) p. 185
J. Snygg, “The Heisenberg picture and the density operatorâ€, American Journal of Physics, 50 (10), 906-909(1982).
R. L. Liboff, “Quantum equations of motion and the Liouville equationâ€, Foundations of Physics, 17 (10), 981-991 (1987).
See, e.g., P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, 2nd Ed. (Tata McGraw Hill, New Delhi, 2010) p. 384
This includes the text by one of the authors: G. J. Ni and S. Q. Chen, Advanced Quantum Mechanics, (Rinton Press, New Jersey, 2003) p. 18 and p. 196
E. Merzbacher, Quantum Mechanics, 3rd Ed. (Wiley, New York, 1998)
P. A. M. Dirac, “The basis of statistical quantum mechanicsâ€, Proceedings of the Cambridge Philosophical Society, 25 (1), 62-66 (1929)
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN: 2394-3688
© Science Front Publishers