### A new look at the quantum Liouville theorem

#### Abstract

#### Keywords

#### Full Text:

DOWNLOAD PDF#### References

J. von Neumann,“Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik”, Nachr. Ges. Wiss. Göttingen, 1, 245-272 (1927).

D. F. Styer, M. S. Balkin, K. M. Becker, M. R. Burns, C. E. Dudley, S. T. Forth, “Nine formulations of quantum mechanics”, American Journal of Physics, 70 (3), 288-297 (2002).

S. Weinberg, “Quantum mechanics without state vectors”, Physical Review A, 90 (4), 042102 (2014).

https://en.wikipedia.org/wiki/Density_matrix

See, e.g., J. J. Sakurai and J. Napolitano, Modern Quantum Mechanics, 2nd Ed. (Cambridge University Press, 2017) p. 185

J. Snygg, “The Heisenberg picture and the density operator”, American Journal of Physics, 50 (10), 906-909(1982).

R. L. Liboff, “Quantum equations of motion and the Liouville equation”, Foundations of Physics, 17 (10), 981-991 (1987).

See, e.g., P. M. Mathews and K. Venkatesan, A Textbook of Quantum Mechanics, 2nd Ed. (Tata McGraw Hill, New Delhi, 2010) p. 384

This includes the text by one of the authors: G. J. Ni and S. Q. Chen, Advanced Quantum Mechanics, (Rinton Press, New Jersey, 2003) p. 18 and p. 196

E. Merzbacher, Quantum Mechanics, 3rd Ed. (Wiley, New York, 1998)

P. A. M. Dirac, “The basis of statistical quantum mechanics”, Proceedings of the Cambridge Philosophical Society, 25 (1), 62-66 (1929)

### Refbacks

- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers