Application of Exp(Phi(Xi))-expansion method for Tzitzeica type nonlinear evolution equations

Md. Rafiqul Islam, Harun-Or- Roshid

Abstract


The idea of Exp(Phi(Xi))-expansion method is used to construct new profuse exact traveling wave solutions of Tzitzeica type nonlinear evolution equations. By means of this method, three types of exact traveling wave solutions for each Tzitzeica type equations are obtained, including the hyperbolic functions and trigonometric functions. The obtained results show that Exp(Phi(Xi))-expansion method is very powerful, effective and convenient mathematical tool for non-linear evolution equations in science and engineering.


Keywords


Exp(Phi(Xi))-expansion method; Tzitzeica equation; Dodd-Bullough-Mikhailov equation; Tzitzeica-Dodd-Bullough equation; traveling wave solutions

Full Text:

DOWNLOAD PDF

References


M.J. Ablowitz and P. A. Clarkson, “Soliton, nonlinear evolution equations and inverse scattering”, (Cambridge University Press, New York), (1991)

E.M.E. Zayed, A. M. Abourabia, K. A. Gepreel, M. M. Horbaty, “On the rational solitary wave solutions for the nonlinear HirotaCSatsuma coupled KdV system”, Appl. Anal., 85, 751-768, (2006)

K.W. Chow, “A class of exact periodic solutions of nonlinear envelope equation”, J. Math. Phys., 36, 4125-4137, (1995)

X. Feng, “Exploratory approach to explicit solution of nonlinear evolutions equations”, Int. J. Theo. Phys., 39, 207-222, (2000)

J. L. Hu, “Explicit solutions to three nonlinear physical models”, Phys. Lett. A, 287, 81-89, (2001)

J. L. Hu, “A new method for finding exact traveling wave solutions to non-linear partial differential equations”, Phys. Lett. A, 286, 175-179, (2001)

I.E. Inan and D. Kaya, “Exact Solutions of Some Nonlinear Partial Differential Equations”, Physica A, 381(1), 104-115, (2007) doi:10.1016/j.physa.2007.04.011

A.K. Ray and J. K. Bhattacharjee, “Standing and Travelling Waves in the Shallow-Water Circular Hydraulic Jump”, Phys. Lett. A, 371 (3), 241-248, (2007)

P.M. Jordan and A. A. Puri, “Note on Traveling Wave Solutions for a Class of Nonlinear Viscoelastic Media”, Phys. Lett., A, 335(2-3), 150-156, (2005) doi:10.1016/j.physleta.2004.11.058

V.A. Osipov, “An Exact Solution for a Fractional Disclination Vortex”, Physics Letters A, 193(1), 97-101, (1994) doi:10.1016/0375-9601(94)00664-4

K. Nakkeeran, “Optical Solitons in Erbium Doped Fibers with Higher Order Effects”, Physics Letters A, 275(5-6), 415-418, (2000) doi:10.1016/S0375-9601(00)00600-9

Z.Y. Yan, “Generalized Method and Its Application in the Higher-Order Nonlinear Schrodinger Equation in Nonlinear Optical Fibres”, Chaos Solitons and Fractals, 16(5), 759-766, (2003) doi:10.1016/S0960-0779(02)00435-6

M.L. Wang, X.Z. Li, J. Zhang, “The (G'/G)-expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics”, Phys. Lett. A, 372, 417-423, (2008)

M.N. Alam, M.A. Akbar and S.T. Mohyud-Din, “A novel (G'/G)-expansion method and its application to the Boussinesq equation”, Chin. Phys. B, Article ID 131006, 23(2) 02XXXX, (2014)

H.O. Roshid, M.N. Alam, M.F. Hoque and M.A. Akbar, “A new extended (G'/G)-expansion method to find exact traveling wave solutions of nonlinear evolution equations”, Mathematics and Statistics, 1(3), 162-166, (2013)

M.N. Alam and M.A. Akbar, “Exact traveling wave solutions of the KP-BBM equation by using the new generalized (G'/G)-expansion method”, Springer Plus, 2(1), 617, (2013) DOI: 10.1186/2193-1801-2-617

M.N. Alam, M.A. Akbar and H.O. Roshid, “Study of nonlinear evolution equations to construct traveling wave solutions via the new

approach of generalized (G'/G)-expansion method”, Mathematics and Statistics, 1(3), 102-112,(2013) DOI: 10.13189/ms.2013.010302

M.A. Akbar, N. H. M. Ali and E.M.E. Zayed, “A generalized and improved (G'/G)-expansion method for nonlinear evolution equations”, Math. Prob. Engr., 2012 (2012) doi: 10.1155/2012/459879.

H. O. Roshid, M. R. Nizhum and M. A. Akbar, “Traveling waves solutions of nonlinear Klein-Gordon equation by extended -expansion method”, Annals of Pure and Appl. Math., 3, 10-16, (2013)

A.J.M. Jawad, M.D. Petkovic and A. Biswas, “Modified simple equation method for nonlinear evolution equations”, Appl. Math. Comput., 217, 869-877, (2010)

J.H. He and X.H. Wu, “Exp-function method for nonlinear wave equations”, Chaos, Solitons Fract., 30, 700-708, (2006)

A. M. Wazwaz, “A sine-cosine method for handle nonlinear wave equations”, Applied Mathematics and Computer Modeling, 40, 499-508, (2004)

D. Liu, “Jacobi elliptic function solutions for two variant Boussinesq equations”, Chaos solitons Fractals, 24, 1373-85, (2005)

Y. Chen and Q. Wang, “Extended Jacobi elliptic function rational expansion method and abundant families of Jacobi elliptic functions solutions to (1+1)-dimensional dispersive long wave equation”, Chaos solitons Fractals, 24, 745-57, (2005)

M.L.wang and Y.B.Zhou, “The periodic wave solutions for the Klein-Gordon-Schrodinger equations”, Phys.Lett.A, 318, 84-92, (2003)

M.L.Wang and X.z.Li, “Extended F-expansion method and periodic wave solutions for the generalized Zakharov equations”, Phys.Lett.A, 343, 48-54, (2005)

M.R. Miura, “Backlund transformation”, Springer, Berlin, (1978)

V.B. Matveev and M.A. Salle, “Darboux transformation and solitons”, Springer, Berlin, (1991)

M. Wang, “Solitary wave solutions for variant Boussinesq equations”, Phy. Lett. A, 199, 169-172, (1995)

E.M.E. Zayed, H.A. Zedan and K.A. Gepreel, “On the solitary wave solutions for nonlinear Hirota-Sasuma coupled KDV equations”, Chaos, Solitons and Fractals, 22, 285-303, (2004)

M.L. Wang, “Exact solutions for a compound KdV-Burgers equation”, Phys. Lett.A, 213, 279-287, (1996)

G. Adomain, “Solving frontier problems of physics: The decomposition method”, Kluwer Academic Publishers, Boston, (1994)

A.M. Wazwaz, “Partial Differential equations: Method and Applications”, Taylor and Francis, (2002)

Sirendaoreji,J.Sun, “Auxiliary equation method for solving nonlinear partial differential equations”, Phys.Lett.A, 309, 387-396, (2003)

Sirendaoreji, “Auxiliary equation method and new solutions of Klein-Gordon equations”, Chaos Solitions Fractals, 31, 943-950, (2007)

M.M. Zhao and C. Li, “The Exp(-Phi(Eta))-expansion method applied to nonlinear evolution equations”, http://www. Paper. Edu. Cn

G.Tzitzeica, “Geometric infinitesimale-surune nouvelle classe de surface”, C. R. Math. Acad. Sci. Paris, 150, 227, (1910)

A.M. Wazwaz, “The tanh method:solitons and periodic solutions for the Dodd-Bullough-Mikhailov and the Tzitzeica-Dodd-Bullough equations”, Chaos Solitons Fractals, 25(1), 55-63, (2005)

J. H. He and M. A. Abdou, “New periodic solutions for nonlinear evolution equations using exp-function method”, Chaos Solitons Fractals, 34, 1421-1429, (2007)


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers