Abundant Exact Traveling Wave Solutions of the (2+1)-Dimensional Couple Broer-Kaup Equations
Abstract
Keywords
Full Text:
DOWNLOAD PDFReferences
E. Yomba, “The modified extended Fan sub-equation method and its application to the (2+1)-Dimensional Broer-Kaup-Kuperschmidt equations,†Chaos, Solitons and Fractals, 27, 1, 187-196 (2006)
E.M.E. Zayed, H.A. Zedan and K.A. Gepreel, On the solitary wave solutions for nonlinear Hirota-Sasuma coupled KDV equations, Chaos, Solitons and Fractals, 22, 285-303, (2010)
M.L. Wang, Exact solutions for a compound KdV-Burgers equation, Physics Letters A, 213, 279-287 (1996)
E.G. Fan, “Extended tanh-function method and its applications to non-linear equationsâ€, Physics Letters A, 277, 4-5, 1619-1625,(2008)
S.A. El-Wakil, M.A. Abdou, “New exact travelling wave solutions using modified extended tanh-function methodâ€, Chaos, Solitons and Fractals, 31(4), 840-852 (2007)
Zhenya Yan, “Abundant families of Jacobi elliptic function solutions of the (G’/G)-dimensional integrable Davey-Stewartson- type equation via a new method â€, Chaos, Solitons and Fractals, 18, 2, 299-309 (2003)
M. L. Wang and Y.B.Zhou, “The periodic wave solutions for the Klein-Gordon-Schrodinger equationsâ€, Physics Letters A, 318, 84-92, (2003)
M.L. Wang and X.Z. Li, “Extended F-expansion method and periodic wave solutions for the generalized Zakharov equationsâ€, Physics Letters A, 343, 48-54 (2005)
M.R. Miura, Backlund transformation, Springer, Berlin, 1978.
V.B. Matveev and M.A. Salle, Darboux transformation and solitons, Springer, Berlin, 1991.
T. Y. Wu and J. E. Zhang, “On modeling nonlinear long wavesâ€, in Mathematics is for Solving Problems, P. Cook, V. Roytburd, and M. Tulin, Eds., pp. 233-249, SIAM, Philadelphia, Pa, USA, 1996.
G. Adomain, “Solving frontier problems of physics: The decomposition methodâ€, Kluwer Academic Publishers, Boston, (1994)
A.M. Wazwaz, Partial Differential equations: Method and Applications, Taylor and Francis, 2002.
Sirendaoreji,J.Sun, Auxiliary equation method for solving nonlinear partial differential equations, Physics Letters A, 309, 387-396 (2003).
Sirendaoreji, Auxiliary equation method and new solutions of Klein-Gordon equations, Chaos, Solitons and Fractals, 31, 943-950 (2007)
M.L. Wang, X.Z. Li, J. Zhang, The -expansion method and traveling wave solutions of nonlinear evolution equations in mathematical physics. Physics Letters A, 372 417-423 (2008)
A. Bekir, Application of the -expansion method for nonlinear evolution equations, Physics Letters A, 372, 3400-3406 (2008)
H.O. Roshid, M.F. Hoque and M.A. Akbar, New extended -expansion method for traveling wave solutions of nonlinear partial differential equations (NPDEs) in mathematical physics, Italian J. of pure and applied math., 33, 175-190 ( 2014)
H.O. Roshid, M.N. Alam, M.F. Hoque and M.A. Akbar, A new extended -expansion method to find exact traveling wave solutions of nonlinear evolution equations, Mathematics and Statistics, 1(3), 162-16 ( 2013)
A. Neyrame, A. Roozi, S. S .Hosseini, S. M. Shafiof, Exact travelling wave solutions for some nonlinear partial differential equations, Journal of King Saud University (Science), 22, 275-278, (2012)
M.A. Akbar, N.H.M. Ali and E.M.E. Zayed, “A Generalized and improved -expansion method for nonlinear evolution equationsâ€, Mathematical Problems in Engineering, 2012, 22 (2012)
H.O. Roshid, N. Rahman and M.A. Akbar, “Traveling wave solutions of nonlinear Klein-Gordon equation by extended -expansion methodâ€, Annals of pure and applied math., 3(1), 10-16 (2013)
E. M. E. Zayed and Shorog Al-Joudi, “Applications of an Extended - Expansion Method to Find Exact Solutions of Nonlinear PDEs in Mathematical Physicsâ€, Mathematical Problems in Engineering, 2010, Article ID 768573, doi: 10.1155/2010/768573
M.M. Zhao and C. Li, “The -expansion method applied to nonlinear evolution equationsâ€, http://www.Paper.Edu.Cn
H.O. Roshid and M. A. Rahman, “The -expansion method with application in the (1+1)-dimensional classical Boussinesq equationsâ€, Results in Physics, 4, 150-155 (2014)
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
ISSN: 2394-3688
© Science Front Publishers