Study of radiative and kinetic properties of femtosecond laser ablated brass plasma by optical emission spectroscopy

Mathi Pandiyathuray, Vinu. V. Namboodiri, Ajay K. Singh

Abstract


Femtosecond laser induced plasma (LIP) in brass was characterized by optical emission spectroscopy (OES). The LIP spectra is dominated by emission from excited neutral species of Cu and Zn. The ionic emission lines are found to decay more rapidly compared to the atomic emission lines. Time resolved OES studies on the expanding plasma plume have provided some insight into probable excitation pathways and the temporal behavior of the excited species.

Further assuming local thermodynamic equilibrium (LTE), the fs-LIP source was characterized for excitation temperature and electron number densities by using the Boltzmann plot method and the width of Stark broadened line profiles respectively. The influence of laser fluence on excitation temperature and electron density was also investigated. The emission intensities exhibit two ablation regimes corresponding to ablation dominated by optical penetration depth at low fluence and by electron thermal diffusion length at higher fluence. Comparative studies on the behavior of copper emission lines from both pure copper and brass samples suggest that femtosecond laser pulses might mitigate the matrix effect in the ablation process.

Keywords


Optical emission spectroscopy, laser induced breakdown spectroscopy, laser induced plasma,

Full Text:

Download PDF

References


A. W. Miziolek, V. Pallesch, I. Schechter, Laser-Induced Breakdown Spectroscopy (LIBS): Fundamentals and Applications, Cambridge University Press, (2006)

D. A. Cremers, L. J. Radziemski, J. Wiley, Handbook of Laser-Induced Breakdown Spectroscopy, John Wiley & Sons, (2006)

X. Hou, B. T. Jones, “Field Instrumentation in Atomic Spectroscopy”, Microchem. J., 66, 115-145 (2000)

R. E. Russo, T. W. Suen, A. A. Bol’shakov, J. Yoo, O. Sorkhabi, X. Mao, J. Gonzalez, D. Oropeza, V. Zorba, “Laser plasma spectrochemistry”, J. Anal. At. Spectrom., 26, 1596-1603 (2011)

B. Smith, “25 years of lasers and analytical chemistry: A reluctant pairing with a promising future”, Trends Anal. Chem., 26, 60-64 (2007)

B. N. Chichkov, C. Momma, S. Nolte, F. Von Alvensleben, A. Tunnermann, “Femtosecond picosecond and nanosecond laser ablation of solids”, Appl. Phys. A: Mater. Sci. Process, 63, 109 (1996)

Q. Yu, L. Li, E. Zhu, W. Hang, J. He, B. Huang, “Analysis of solids with different matrices by buffer-gas-assisted laser ionization orthogonal time-of-flight mass spectrometry”, J. Anal. At. Spectrom., 25, 1155-1158 (2010)

S. Link, C. Burda, B. Nikoobakht, M.A. El-Sayed, “Laser induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses”, J. Phys.Chem. B, 104, 6152-(2000)

E. Cromwell, P. Arrowsmith, “Fractionation effects in laser ablation inductively coupled plasma mass spectrometry”, Appl. Spectrosc., 49, 1652-1660 (1995)

H. L. Xu, G. M´ejean, W. Liu, Y. Kamali, J. F. Daigle, A. Azarm, P. T. Simard, P. Mathieu, G. Roy, J. R. Simard, S. l. Chin, “Remote detection of similar biological materials using femtosecond filament induced breakdown spectroscopy”, Appl. Phys. B, 87, 151-156 (2007)

R. Le Harzic, N. Huot, E. Audouard, C. Jonin, P. Laporte, S. Valette, A. Fraczkiewicz, R. Fortunier, “Comparison of Heat affected Zone due to nanosecond and femtosecond laser pulses using Transmission Electronic Microscopy”, Appl. Phys. Lett., 80, 3886-3888, (2002)

S. Sreedhar, G. Manoj Kumar, M. Ashwin Kumar, P. Prem Kiran, P. Tewari Surya, S. Venugopal Rao, “Femtosecond and nanosecond laser induced breakdown spectroscopic studies of NTO, HMX, and RDX”, Spectrochim. Acta Part B, 79-80, 31-38 (2013)

R. Hergenroder, O. Samek, V. Hommes, “Femtosecond laser-ablation elemental mass spectrometry”, Mass Spectrom. Rev., 25, 551-572 (2006)

R. E. Russo, X. L. Mao, C. Liu, J. Gonzalez, “Laser assisted plasma spectrochemistry: laser ablation”, J. Anal. At. Spectrom. 19, 1084-1089 (2004)

M. Lenzner, F. Krausz, J. Kruger, W. Kautek, “Photoablation with sub-10 fs laser pulses”, Appl. Surf. Sci., 154, 11-16 (2000)

J. Gonzalez, C. Liu, X. Mao, R. E. Russo, “UV-femtosecond laser ablation-ICP-MS for analysis of alloy samples”, J. Anal. At. Spectrom., 19, 1165-1168 (2004)

J. Koch, D. Gunther, “Femtosecond laser ablation inductively coupled plasma mass spectrometry: achievements and remaining problems”, Anal. Bioanal. Chem., 387, 149-153 (2007)

B. Zhang, M. He, W. Hang, B. Huang, “Minimizing matrix effect by femtosecond laser ablation and ionization in elemental determination”, Anal. Chem., 85, 4507- 4511 (2013)

NIST Atomic Spectral Database, http://physics.nist.gov

L. J. Radziemski, D. A. Cremers, Laser induced plasmas and applications, eds Marcel Dekker, USA (1989)

Y. Ushirozawa, K. Wagatsuma, “Excitation Mechanisms of Copper Ionic and Atomic Lines Emitted from a Low-Pressure Argon Laser-Induced Plasma”, Spect. Lett., 38, 539-555 (2005)

J. A. M. van der Mullen, “On the atomic state distribution function in inductively coupled plasmas—I. Thermodynamic equilibrium considered on the elementary level”, Spectrochim. Acta Part B, 44, 1067-1080 (1989)

H. R. Griem, Plasma Spectroscopy, McGraw-Hill Inc., New York (1964)

T. Fujimoto, Plasma Spectroscopy, Clarendon Press, Oxford (2004)

H. R. Griem, Spectral Line Broadening by Plasmas, Academic Press, USA (1974)

G. Bekefi, Principles of laser plasmas, Wiley, Interscience (1976)

N. Konjevic, M. S. Dimitrijevic, W. L. Wiese, “Experimental Stark Widths and Shifts for Spectral Lines of Neutral Atoms”, J. Phys. Chem. Ref. Data, 13(3), 619-647 (1984)

M. Capitelli, A. Casawola, G. Colonna, A. DeGiacomo, “Laser-induced plasma expansion: theoretical and experimental aspects”, Spectrochim. Acta B, 59, 271-289 (2004)

R. W. P. McWhirter, Plasma Diagnostic Techniques, Academic press (1965)

P. W. Milonni, J. H. Eberly, Lasers, John Wiley and sons, New York (1988)

S. I. Anisimov, B. L. Kapeliovich, T. L. Perel’man, “Electron emission from metal surfaces exposed to ultrashort laser pulses”, Soviet Physics Jetp-Ussr, 39(2), 375-377 (1974)

J. Byskov-Nielsen, J-M. Savolainen, M. S. Christensen, P. Balling, Appl. Phys. A, 101, 97-101 (2010)

A. Fernandez, X. L. Mao, W. T. Chan, M. A. Shannon, R. E. Russo, “Correlation of spectral emission intensity in the inductively coupled plasma and laser induced plasma during laser ablation of solid samples”, Anal. Chem., 67, 2444-2450 (1995)

A. Ruf, D. Breitling, P. Berger, F. Dausinger, H. Hügel, “Modeling and investigation of melt ejection dynamics for laser drilling with short pulses”, Proc. SPIE, 4830, 73-78 (2003)

N.G. Semaltianos,•W. Perrie, P. French, M. Sharp, G. Dearden, S. Logothetidis,• K.G.Watkins, “Femtosecond laser ablation characteristics of nickel-based superalloy C263”, Appl. Phys. A, 94, 999–1009 (2009)


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers