Effect of Pressure on Structural, Elastic and Electronic Properties of Perovskite PbTiO3

Ibrahim Isah, Salisu I. Kunya, Sani Abdulkarim, Bello Usama Ibrahim

Abstract


We study the effect of pressure on Structural, elastic and electronic properties of Cubic and Tetragonal Perovskite using density function theory. The equilibrium parameters obtained are in good agreement with the available literature both experimental and theoretical. We found out that there is transition from tetragonal to cubic at a pressure of around 30GPa. Both crystals are stable in the pressure range of this study (0 – 50 GPa), and the stability increases with increasing pressure. The bulk modulus (B), Young modulus (E) and Shear modulus (G) all increase with increasing pressure. The band-gap increases and decrease around (X-Gamma) and (M-Gamma) for the case of Cubic and decrease for the case of Tetragonal Crystal around (X-Gamma), (Z-Gamma) and (Z-X) which converges at pressure of around 30GPa.


Keywords


DFT, GGA, DOS, Electronic, Stability, Perovskite

Full Text:

DOWNLOAD PDF

References


B. Y. Mao, H. Zhou, S. S. Wong, and M. Matters, “Synthesis , Properties , and Applications of Perovskite- Phase Metal Oxide Nanostructures,” vol. 3, no. 254290, pp. 1–8, 2011.

A. Bartasyte, “Stress effects and phase transitions in PbTiO3 thin films deposited by MOCVD Ausrine Bartasyte To cite this version : HAL Id : tel-01122037 Ausrine Bartasyte,” 2015.

O. Access, “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 % Introductory Chapter : Perovskite Materials and Advanced.”

Y. Liu, G. Xu, C. Song, Z. Ren, G. Han, and Y. Zheng, “First-principles study of elastic properties in perovskite PbTiO 3,” vol. 472, pp. 269–272, 2008, doi: 10.1016/j.msea.2007.03.028.

L. Yong, N. Li-hong, X. Gang, S. Chen-lu, H. Gao-rong, and Z. Yao, “Phase transition in PbTiO 3 under pressure studied by the first-principles method,” vol. 403, pp. 3863–3866, 2008, doi: 10.1016/j.physb.2008.06.027.

M. F. M. Taib, M. K. Yaakob, O. H. Hassan, M. Z. A. Yahya, and S. Alam, “Integrated Ferroelectrics : An Structural , Electronic , and Lattice A Comparative First-Principles Study,” no. December, pp. 37–41, 2013, doi: 10.1080/10584587.2013.780528.

J. Zhu et al., “Thermal equations of state and phase relation of PbTiO3 : A high P-T synchrotron x-ray diffraction study Thermal equations of state and phase relation of PbTiO 3 : A high P-T synchrotron x-ray diffraction study,” vol. 084103, no. 2011, 2012, doi: 10.1063/1.3651377.

J. Zhu, C. Jin, W. Cao, and X. Wang, “Phase transition and dielectric properties of nanograin BaTiO 3 ceramic under high pressure,” pp. 23–26, 2008, doi: 10.1063/1.2944253.

E. Abdul and R. Assirey, “Perovskite synthesis , Properties and their related biochemical and industrial application Perovskite synthesis , properties and their related biochemical and industrial application,” Saudi Pharm. J., no. May, 2019, doi: 10.1016/j.jsps.2019.05.003.

J. Chen et al., “Neutron diffraction studies of structure and increasing splitting of LO-TO phonons in Pb 1 − x Cd x Ti O 3 Neutron diffraction studies of structure and increasing splitting of LO-TO phonons in Pb 1 − x Cd x TiO 3,” vol. 074106, no. 2006, pp. 0–4, 2013, doi: 10.1063/1.2357866.

S. A. Mabud and P. Road, “Powder Profile Refinement of Lead Zireonate Titanate at Several Temperatures. II. Pure PbTiO 3,” vol. 3, 1974.

G. A. Samara, “Effects of pressure on the dielectric properties and phase transitions of the alkali metal tantalates and niobates,” vol. 0193, no. June, 2016, doi: 10.1080/00150198708227914.

N. Sicron, “Nature of the ferroelectric phase transition in PbTiOs,” vol. 50, no. 18, 1994.

R. Branch and I. Introduction, “A First Principles Calculation of the Structural and Optical Properties of PbTiO 3 in the Paraelectric Phase S. J. Mousavi 1, ∗ and A. Pourhabib-yekta 2 1,” vol. 50, no. 4, 2012.

T. Fan, H. Xiao, and P. Tang, “High-throughput first-principle calculations of the structural , mechanical , and electronic properties of cubic XTiO 3 ( X = Ca , Sr , Ba , Pb ) ceramics under high pressure,” vol. 3, no. January, 2020, doi: 10.1002/qua.26168.

M. Johnsson and P. Lemmens, “Crystallography and Chemistry of Perovskites,” pp. 1–11.

S. Kuma, “Structural , Electronic , Lattice Dynamic , and Elastic Properties of SnTiO 3 and PbTiO 3 Using Density Functional Theory,” vol. 2019, 2019.

V. K. Shukla, “Electronic structure of PbTiO 3 perovskite based on density functional calculation,” vol. 110035, pp. 1–5, 2018, doi: 10.1063/1.5033060.

F. Wang, I. Grinberg, A. M. Rappe, F. Wang, I. Grinberg, and A. M. Rappe, “Band gap engineering strategy via polarization rotation in perovskite ferroelectrics Band gap engineering strategy via polarization rotation in perovskite ferroelectrics,” vol. 152903, 2014, doi: 10.1063/1.4871707.

V. G. Tyuterev and N. Vast, “Murnaghan’s equation of state for the electronic ground state energy,” Comput. Mater. Sci., vol. 38, no. 2, pp. 350–353, 2006, doi: 10.1016/j.commatsci.2005.08.012.

T. Katsura and Y. Tange, “A simple derivation of the Birch–Murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain,” Minerals, vol. 9, no. 12, 2019, doi: 10.3390/min9120745.

U. V Waghmare and K. M. Rabe, “Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3,” vol. 55, no. 10, pp. 6161–6173, 1997.

S. Piskunov, “Bulk properties and electronic structure of SrTiO 3 , BaTiO 3 , PbTiO 3 perovskites : an ab initio HF / DFT study,” vol. 29, pp. 165–178, 2004, doi: 10.1016/j.commatsci.2003.08.036.

P. Ghosez, E. Cockayne, U. V Waghmare, and K. M. Rabe, “A comparative first-principles study,” vol. 60, no. 2, pp. 836–843, 1999.

S. M. Ã. Hosseini, T. Movlarooy, and A. Kompany, “First-principle calculations of the cohesive energy and the electronic properties of PbTiO 3,” vol. 391, pp. 316–321, 2007, doi: 10.1016/j.physb.2006.10.013.

Y. Kuroiwa, S. Aoyagi, and A. Sawada, “Evidence for Pb-O Covalency in Tetragonal PbTiO 3,” pp. 19–22, 2001, doi: 10.1103/PhysRevLett.87.217601.

Z. Li, M. Grimsditch, and C. M. Foster, “DIELECTRIC AND ELASTIC PROPERTIES OF FERROELECTRIC,” vol. 57, no. 10, pp. 1433–1438, 1996.

J. Long, L. Yang, and X. Wei, “Lattice , elastic properties and Debye temperatures of ATiO 3 ( A = Ba , Ca , Pb , Sr ) from first-principles,” J. Alloys Compd., vol. 549, pp. 336–340, 2013, doi: 10.1016/j.jallcom.2012.08.120.

J. Enkovaara, C. Rostgaard, and J. J. Mortensen, “Advanced capabilities for materials modelling with Q uantum ESPRESSO.”

H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Elasticity of SrTiO 3 perovskite under high pressure in cubic , tetragonal and orthorhombic phases,” vol. 025602, doi: 10.1088/0031-8949/82/02/025602.

C. The, “Elastic properties of tetragonal PbTiO 3 single crystals by Brillouin scattering,” pp. 2623–2627, 1997.

H. Zhai, X. Li, and J. Du, “First-Principles Calculations on Elasticity and Anisotropy of Tetragonal Tungsten Dinitride under Pressure,” vol. 53, no. 7, pp. 1247–1251, 2012.

L. Liu, X. Wu, R. Wang, Z. Hu, Y. Jiang, and D. Liu, “Mechanical Properties of YNi 2 B 2 C and LuNi 2 B 2 C,” pp. 1–12, 2017, doi: 10.3390/cryst7060173.

Z. Hu, W. Xu, C. Chen, Y. Wen, and L. Liu, “First-Principles Calculations of the Structure Stability and Mechanical Properties of LiFeAs and NaFeAs under Pressure,” vol. 2018, 2018.

S. R. Phillpot and D. Wolf, “Letters 20,” vol. 71, no. 25, pp. 4182–4185, 1993.

F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 90, no. 22, 2014, doi: 10.1103/PhysRevB.90.224104.

J. A. Brehm et al., “Density functional theory study of hypothetical PbTiO 3 -based oxysulfides,” vol. 195202, pp. 1–8, 2014, doi: 10.1103/PhysRevB.89.195202.

B. Y. Mao, H. Zhou, S. S. Wong, and M. Matters, “Synthesis , Properties , and Applications of Perovskite- Phase Metal Oxide Nanostructures,” vol. 3, no. 254290, pp. 1–8, 2011.

A. Bartasyte, “Stress effects and phase transitions in PbTiO3 thin films deposited by MOCVD Ausrine Bartasyte To cite this version : HAL Id : tel-01122037 Ausrine Bartasyte,” 2015.

O. Access, “We are IntechOpen , the world ’ s leading publisher of Open Access books Built by scientists , for scientists TOP 1 % Introductory Chapter : Perovskite Materials and Advanced.”

Y. Liu, G. Xu, C. Song, Z. Ren, G. Han, and Y. Zheng, “First-principles study of elastic properties in perovskite PbTiO 3,” vol. 472, pp. 269–272, 2008, doi: 10.1016/j.msea.2007.03.028.

L. Yong, N. Li-hong, X. Gang, S. Chen-lu, H. Gao-rong, and Z. Yao, “Phase transition in PbTiO 3 under pressure studied by the first-principles method,” vol. 403, pp. 3863–3866, 2008, doi: 10.1016/j.physb.2008.06.027.

M. F. M. Taib, M. K. Yaakob, O. H. Hassan, M. Z. A. Yahya, and S. Alam, “Integrated Ferroelectrics : An Structural , Electronic , and Lattice A Comparative First-Principles Study,” no. December, pp. 37–41, 2013, doi: 10.1080/10584587.2013.780528.

J. Zhu et al., “Thermal equations of state and phase relation of PbTiO3 : A high P-T synchrotron x-ray diffraction study Thermal equations of state and phase relation of PbTiO 3 : A high P-T synchrotron x-ray diffraction study,” vol. 084103, no. 2011, 2012, doi: 10.1063/1.3651377.

J. Zhu, C. Jin, W. Cao, and X. Wang, “Phase transition and dielectric properties of nanograin BaTiO 3 ceramic under high pressure,” pp. 23–26, 2008, doi: 10.1063/1.2944253.

E. Abdul and R. Assirey, “Perovskite synthesis , Properties and their related biochemical and industrial application Perovskite synthesis , properties and their related biochemical and industrial application,” Saudi Pharm. J., no. May, 2019, doi: 10.1016/j.jsps.2019.05.003.

J. Chen et al., “Neutron diffraction studies of structure and increasing splitting of LO-TO phonons in Pb 1 − x Cd x Ti O 3 Neutron diffraction studies of structure and increasing splitting of LO-TO phonons in Pb 1 − x Cd x TiO 3,” vol. 074106, no. 2006, pp. 0–4, 2013, doi: 10.1063/1.2357866.

S. A. Mabud and P. Road, “Powder Profile Refinement of Lead Zireonate Titanate at Several Temperatures. II. Pure PbTiO 3,” vol. 3, 1974.

G. A. Samara, “Effects of pressure on the dielectric properties and phase transitions of the alkali metal tantalates and niobates,” vol. 0193, no. June, 2016, doi: 10.1080/00150198708227914.

N. Sicron, “Nature of the ferroelectric phase transition in PbTiOs,” vol. 50, no. 18, 1994.

R. Branch and I. Introduction, “A First Principles Calculation of the Structural and Optical Properties of PbTiO 3 in the Paraelectric Phase S. J. Mousavi 1, ∗ and A. Pourhabib-yekta 2 1,” vol. 50, no. 4, 2012.

T. Fan, H. Xiao, and P. Tang, “High-throughput first-principle calculations of the structural , mechanical , and electronic properties of cubic XTiO 3 ( X = Ca , Sr , Ba , Pb ) ceramics under high pressure,” vol. 3, no. January, 2020, doi: 10.1002/qua.26168.

M. Johnsson and P. Lemmens, “Crystallography and Chemistry of Perovskites,” pp. 1–11.

S. Kuma, “Structural , Electronic , Lattice Dynamic , and Elastic Properties of SnTiO 3 and PbTiO 3 Using Density Functional Theory,” vol. 2019, 2019.

V. K. Shukla, “Electronic structure of PbTiO 3 perovskite based on density functional calculation,” vol. 110035, pp. 1–5, 2018, doi: 10.1063/1.5033060.

F. Wang, I. Grinberg, A. M. Rappe, F. Wang, I. Grinberg, and A. M. Rappe, “Band gap engineering strategy via polarization rotation in perovskite ferroelectrics Band gap engineering strategy via polarization rotation in perovskite ferroelectrics,” vol. 152903, 2014, doi: 10.1063/1.4871707.

V. G. Tyuterev and N. Vast, “Murnaghan’s equation of state for the electronic ground state energy,” Comput. Mater. Sci., vol. 38, no. 2, pp. 350–353, 2006, doi: 10.1016/j.commatsci.2005.08.012.

T. Katsura and Y. Tange, “A simple derivation of the Birch–Murnaghan equations of state (EOSs) and comparison with EOSs derived from other definitions of finite strain,” Minerals, vol. 9, no. 12, 2019, doi: 10.3390/min9120745.

U. V Waghmare and K. M. Rabe, “Ab initio statistical mechanics of the ferroelectric phase transition in PbTiO 3,” vol. 55, no. 10, pp. 6161–6173, 1997.

S. Piskunov, “Bulk properties and electronic structure of SrTiO 3 , BaTiO 3 , PbTiO 3 perovskites : an ab initio HF / DFT study,” vol. 29, pp. 165–178, 2004, doi: 10.1016/j.commatsci.2003.08.036.

P. Ghosez, E. Cockayne, U. V Waghmare, and K. M. Rabe, “A comparative first-principles study,” vol. 60, no. 2, pp. 836–843, 1999.

S. M. Ã. Hosseini, T. Movlarooy, and A. Kompany, “First-principle calculations of the cohesive energy and the electronic properties of PbTiO 3,” vol. 391, pp. 316–321, 2007, doi: 10.1016/j.physb.2006.10.013.

Y. Kuroiwa, S. Aoyagi, and A. Sawada, “Evidence for Pb-O Covalency in Tetragonal PbTiO 3,” pp. 19–22, 2001, doi: 10.1103/PhysRevLett.87.217601.

Z. Li, M. Grimsditch, and C. M. Foster, “DIELECTRIC AND ELASTIC PROPERTIES OF FERROELECTRIC,” vol. 57, no. 10, pp. 1433–1438, 1996.

J. Long, L. Yang, and X. Wei, “Lattice , elastic properties and Debye temperatures of ATiO 3 ( A = Ba , Ca , Pb , Sr ) from first-principles,” J. Alloys Compd., vol. 549, pp. 336–340, 2013, doi: 10.1016/j.jallcom.2012.08.120.

J. Enkovaara, C. Rostgaard, and J. J. Mortensen, “Advanced capabilities for materials modelling with Q uantum ESPRESSO.”

H. Search, C. Journals, A. Contact, M. Iopscience, and I. P. Address, “Elasticity of SrTiO 3 perovskite under high pressure in cubic , tetragonal and orthorhombic phases,” vol. 025602, doi: 10.1088/0031-8949/82/02/025602.

C. The, “Elastic properties of tetragonal PbTiO 3 single crystals by Brillouin scattering,” pp. 2623–2627, 1997.

H. Zhai, X. Li, and J. Du, “First-Principles Calculations on Elasticity and Anisotropy of Tetragonal Tungsten Dinitride under Pressure,” vol. 53, no. 7, pp. 1247–1251, 2012.

L. Liu, X. Wu, R. Wang, Z. Hu, Y. Jiang, and D. Liu, “Mechanical Properties of YNi 2 B 2 C and LuNi 2 B 2 C,” pp. 1–12, 2017, doi: 10.3390/cryst7060173.

Z. Hu, W. Xu, C. Chen, Y. Wen, and L. Liu, “First-Principles Calculations of the Structure Stability and Mechanical Properties of LiFeAs and NaFeAs under Pressure,” vol. 2018, 2018.

S. R. Phillpot and D. Wolf, “Letters 20,” vol. 71, no. 25, pp. 4182–4185, 1993.

F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 90, no. 22, 2014, doi: 10.1103/PhysRevB.90.224104.

J. A. Brehm et al., “Density functional theory study of hypothetical PbTiO 3 -based oxysulfides,” vol. 195202, pp. 1–8, 2014, doi: 10.1103/PhysRevB.89.195202.

P. Giannozzi et al., J. Phys.:Condens. Matter 21 395502 (2009).

P. Giannozzi et al., J. Phys.:Condens. Matter 29 465901 (2017). http://www.quantum-espresso.org.

A. Dal Corso, Computational Material Science 95, 337 (2014).


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers