The Effect of Varying Soot Concentration and Relative Humidity on Visibility and Particle Size Distribution in Urban Atmosphere

Ummulkhair Yahaya Abdulkarim, S. U. Yerima, B. I. Tijjani, U. M. Gana, M. Sani


This research used extracted extinction coefficients and common mode radii of urban aerosols to carry out visibility simulations at corresponding spectral wavelengths from 0.4-0.8µm from the improved version of the Optical Properties of Aerosols and Clouds (OPAC 4.0) data at eight relative humidities(RH) (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99% RH). Five models of the urban aerosols used comprised of insoluble (INSO), Water-soluble (WASO) and Soot (Black Carbon). From the average concentration set up by OPAC 4.0, the concentrations of the Soot (Black Carbon) were varied by external mixing. The Angstrom exponent (α), the curvature (α2) and the urban atmospheric turbidity (β) were obtained from the regression analysis of the first and second order polynomial of Kaufman’s representation of the Koschmieder equation for atmospheric visibility. The mean exponents of the aerosol size growth curve (µ) were determined from the aerosol effective hygroscopic growth (geff) while the humidification factors (γ) were determined from the visibility enhancement factors f(RH,λ). With µ and γ, the mean exponents of aerosol size distributions (υ) were determined for all the models. It was observed that at varying Soot (Black Carbon) concentrations and RH there were non-linear relationships between them and visibilities. The values of α > 1 showed the presence of fine mode particles from the WASO part of the aerosol mixture and α2 being positive indicated bimodal aerosol particle distributions. Additionally, visibility deterioration is predicted because of the increase in turbidity (β) with the variation of Soot and RH.

Full Text:



Ramachandran, S., and S. Kedia (2010), Black carbon aerosols over an urban region: Radiative forcing and climate impact, J. Geophys. Res., 115, D10202, doi:10.1029/2009JD013560.

Chillrud, S.N., Bopp, R.F., Simpson, H.J., Ross, J.M., Shuster, E.L., Chaky, D.A., Walsh, D.C., Choy, C.C., Tolley, L.R., Yarme, A., 1999. Twentieth century atmospheric metal fluxes into Central Park Lake, New York City. Environmental Science and Technology 33, 657–662.

Davis, A.P., Shokouhian, M., Ni, S., (2001). Loading estimates of lead, copper, cadmium, and zinc in urban runoff from specific sources. Chemosphere 44, 997–1009.

Novakov, T., V. Ramanathan, J. E. Hansen, T. W. Kirchstetter, M. Sato, J. E. Sinton, and J. A. Sathaye (2003), Large historical changes of fossil†fuel black carbon aerosols, Geophys. Res. Lett., 30(6), 1324, doi:10.1029/2002GL016345.

Morselli, L., Barilli, L., Olivieri, P., Cecchini, M., Aromolo, R., Di Carlo, V., Francaviglia, R., Gataleta, L., (1999a). Heavy metals determination in dry surrogate depositions. Characterisa-tion of an urban and natural site. Annali di Chimica-Rome 89, 739–746.

Morselli, L., Passarini, F., Zamagni, E., Brusori, B., (2000). Methodo-logical approach for an integrated environmental monitoring system relative to heavy metals from an incineration plant. Annali di Chi-mica - Rome 90, 723–732.

Cabon, J.Y., (1999). Chemical characteristics of precipitation at an Atlantic station. Water, Air, and Soil Pollution 111, 399–416.

Ramanathan, V., and G. Carmichael (2008), Global and regional climate changes due to black carbon, Nat. Geosci., 1, 221–227.

Badarinath, K V S Latha, K Madhavi (2006). Direct radiative forcing from black carbon aerosols over urban environment . Advances in Space Research 37, 2183–218837

D., Wu, X. X., Li, C. C., Ying, Z. M., Lau, A. K. H., Huang, J., X. J.,Deng, & X. Y. Bi, (2005): An extremely low visibility event over the Guangzhou region: A case study, Atmos. Environ., 39(35), 6568–6577,

A. S., Bret, B. H., Rudolf, R. F, Stefan. & E.W.,William (2001). Haze trends over the United States, 1980–1995. Journal of Atmosphere and Environment. 35: 5205–5210.

Y.C., Chan, R.W., Simpson, G. H., Mctainsh, P. D., Vowles, D. D.,Cohen & G. M., Bailey, (1999). Source Apportionment of Visibility Degradation Problems in Brisbane (Australia) Using the Multiple Linear Regression Techniques. Journal of Atmosphere and Environment. 33: 3237–3250.

M. Doylem & S., Dorling (2002). Visibility Trends in the UK 1950-1997. Journal of Atmosphere and Environment. 36: 3163–3172.

R. A., Kotchenruther, P.V., Hobbs, D. A., Hegg, (1999). Humidification factors for atmospheric aerosol off the mid-Atlantic coast of United States. J. Geophys. Res. 104 (D2), 2239-2251.

S.C., Yoon, J., Kim, (2006). Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia. Atmos. Environ. 40 (23), 4328-4338

C. K., Chan, & X. H., Yao, (2008): Air pollution in mega cities in China, Atmos. Environ., 42, 1–42.

X. J., Deng, X. X.,Tie D.,Wu, X. J., Zhou, X.Y., Bi, H. B.,Tan F., Li & C. L.,Jiang (2008): Long- Term Trend of Visibility and Its Characterizations in the Pearl River Delta (PRD) Region, China. Journal of Atmosphere and Environment .42(7), 1424–1435.

P., Massoli, T.S., Bates, P.K., Quinn, D.A., Lack, T., Baynard, B.M., Lerner, S.C., Tucker, J., Brioude, A., Stohl, E.J.,Williams,(2009). Aerosol optical and hygroscopic properties during TexAQS-GoMACCS 2006 and their impact on aerosol direct radiative forcing. J. Geophys. Res. 114, D00F07.

B. I. Tijjani (2013). The Effect of Soot and Water Soluble on the Hygroscopicity of Urban Aerosols. Advances in Physics Theories and Applications ISSN 2224-719X (Paper) ISSN 2225-0638 (Online) Vol.26,

Y. F.,Cheng, A.,Wiedensohler H.,Eichler J.,Heintzenberg M.,Tesche A.,Ansmann M.,Wendisch H.,Su Althausen D. H.,Herrmann T.,Gnauk E.,Bruggemann M., Hu Y.H.,Zhang (2008). Relative Humidity Dependence of Aerosol Optical Properties and Direct Radiative Forcing in The Surface Boundary Layer at Xinken in Pearl River Delta of China: An Observation Based Numerical Study. Journal of Atmosphere and Environment. 42, 6373-6397.

H., Koschmieder, (1972): Theorie der horizontalenSichtweite, BeiträgezurPhysik der freien Atmosphäre, Meteorol. Z.,12, 33–55,

X. Liu et al. (2012). ‘Aerosol Hygroscopicity and Its Impact on Atmospheric Visibility and Radiative Forcing in Guangzhou during the 2006 PRIDE-PRD Campaign’. Atmospheric Environment 60: 59–67.

X.G.,Liu, Y.H.,Zhang, J.S.,Jung, J.W., Gu, Y.P., Li, S.,Guo, S.Y.,Chang, D.,Yue, P.,Lin, Y.J.,Kim, M.,Hu, L.M.,Zeng, T., Zhu, (2009). Research on aerosol hygroscopic properties by measurement and model during the 2006 CARE Beijing campaign. J. Geophys. Res. 114, D00G16.

X.G.,Liu, Y.H.,Zhang, M.T.,Wen, J.L.,Wang, J.S.,Jung, S.Y.,Chang, M.,Hu, L.M.,Zeng, Y.J.,Kim, (2010).A closure study of aerosol hygroscopic growth factor during the 2006 PRD campaign. Adv. Atmos. Sci..

J.S.,Reid, A.,Jayaraman, J.T.,Kiehl, T.N.Krishnamurti, & D.Lubin, (1999). Physical, chemical and optical regional hazes dominated by smoke in Brazil. Journal of Geophysical Research, 103: 32059-32080.

S. Sjogren, et al. (2007). ‘Hygroscopic Growth and Water Uptake Kinetics of Two-Phase Aerosol Particles Consisting of Ammonium Sulfate , Adipic and Humic Acid Mixtures’. 38: 157–71.

B.I.Tijjani, A. Aliyu, & F. Shaaibu (2014b). ‘The Effect of Relative Humidity on Continental Average Aerosols’. Open Journal of Applied Sciences, 4, 399-423 (6)

M.King, & D. Byrne, (1976). A method for inferring total ozone content from the spectral variation of total optical depth obtained with a solar radiometer. Journal of Geophysical Research, 33: 3251-3254

A. Ångström (1961). Techniques of Determining the Turbidity. Tellus, 13(2): 214-223.

G.S.M.,Galadanci, B.I.,Tijjani, A.I.,Abubakar, F. S.,Koki, I. D.,Adamu, A. M.,Nura, M.,Saleh, & S.Uba, (2015): The Effect of Kelvin Effect On The Equilibrium Effective Radii And Hygroscopic Growth of Atmospheric Aerosols. IISTE- Journal of Natural Sciences Research, Vol.5, No.22, 2015 p96-111.

F. Kasten (1969). Visibility forecast in the phase of pre-condensation. Tellus, XXI, 5, 631–635.

Y. Kaufman (1993). Aerosol optical thickness and path radiance. Journal of Geophysical research 98 (D2) 2677-2692.

I.N.,Tang, H.R.,Munkelwitz, (1994). Water activities, densities, and refractive indices of aqueous sulfate and sodium nitrate droplets of atmospheric importance. J. Geophys. Res. 99 (D9), 18,801-18,808.

B. I., Tijjani, F. Sha’aibu & A. Aliyu (2014a).The Effect of Relative Humidity on Maritime Polluted Aerosols. International Journal of Pure and Applied Physics Vol.2, No.1, Pp.9-36,

A.,Moln´ar, E.,M´esz´aros, K., Imre, & A.R¨ull, (2008): Trends in visibility over Hungary between 1996 and 2002, Atmos. Environ., 42, 2621–2629,

B. I.,Tijjani, F.Sha’aibu & A. Aliyu. (2014a).The Effect of Relative Humidity on Maritime Polluted Aerosols. International Journal of Pure and Applied Physics Vol.2, No.1, Pp.9-36,

P. K.,Quinn, et al. (2005) , Impact of particulate organic matter on the relative humidity dependence of light scattering: A simplified parameterization, Geophys. Res. Lett., 32, L22809,

C. E. Junge, (1958). Atmospheric Chemistry. Advances in geophysics (Vol. 4, pp 1-108). Elsevier

I. N.Tang (1996).Chemical and size effects of hygroscopic aerosols on light scattering coefficients. Journal of Geophysical Research 101 (D14), 19,245-19,250

T. F.,Eck, B. N.,Holben, D. E., Ward,O., R. J. S.,Dubovic, A., Smirnov, M. M., Mukelabai N. C., Hsu, N. T.,O’ Neil & I.Slutsker (2001) Characterization of The Optical Properties of Biomass Burning Aerosols in Zambia During the 1997 ZIBBEE Field Campaign, Journal of Geophysics Research, 106(D4), 3425–3448.

E. Frankenberger, (1967) Beitr. Phys. Atmos. 37, 183.

C. S.,Yuan, C. G, Lee, J. C. Chang & C.Yuan (2005) Effects of Aerosol Species on Atmospheric Visibility in Kaohsiung City, Taiwan. Journal of Air & Waste Management Association. 55:1031–1041

Y.H.,Zhang, M., Hu, L.J.,Zhong, A.,Wiedensohler, S.C.,Liu, M.O.,Andreae, W.,Wang, S.J.,Fan, (2008). Regional integrated experiments on air quality over Pearl River Delta 2004 (PRIDE-PRD2004): overview. Atmos. Environ. 42, 6157-6173.

P.,Zieger, R., Fierz-Schmidhauser, L.,Poulain, T., Müller, W.,Birmili, G.,Spindler, A.,Wiedensohler, Baltensperger, U., & E.Weingartner, (2013): Effects of relative humidity on aerosol light scattering: results from different European sites, Atmos. Chem. Phys., 13, 10609–10631.

K. N.,Liou, Y.,Takano & P.Yang (2013). ‘Journal of Quantitative Spectroscopy & Radiative Transfer Intensity and Polarization of Dust Aerosols over Polarized Anisotropic Surfaces’. Journal of Quantitative Spectroscopy and Radiative Transfer 127: 149–57.

C.,Grandey S.Benjamin & C.Wang (2019). Background Conditions Influence the Estimated

Cloud Radiative Effects of Anthropogenic Aerosol Emissions From Different Source Regions. Journal of Geophysical Research: Atmospheres 124(4): 2276–95


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers