Quasi-exactly solvable PT-symmetric sextic oscillators resulting from real quotient polynomials

Spiros Konstantogiannis

Abstract


We present a method of constructing PT-symmetric sextic oscillators using quotient polynomials and show that the reality of the energy spectrum of the oscillators is directly related to the PT symmetry of the respective quotient polynomials. We then apply the method to derive sextic oscillators from real quotient polynomials and demonstrate that the set of resulting oscillators comprises a quasi-exactly solvable system that contains the real, quasi-exactly solvable sextic oscillator. In this framework, the classification of the PT-symmetric sextic oscillators on the basis of whether they result from real or complex quotient polynomials is a natural consequence.

Keywords


PT symmetry; sextic oscillators; quasi-exact solvability; quotient polynomials

Full Text:

DOWNLOAD PDF

References


Carl M. Bender, "Introduction to PT-Symmetric Quantum Theory", Contemp. Phys. 46 (4), 277-292 (2005).

Carl M. Bender and Stefan Boettcher, "Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry", Phys. Rev. Lett. 80 (24), 5243-5246 (1998).

Carl M. Bender, "PT symmetry in quantum physics: From a mathematical curiosity to optical experiments", Europhysics News 47 (2), 17-20 (2016).

R. El-Ganainy, K. G. Makris, D. N. Christodoulides, and Ziad H. Musslimani, "Theory of coupled optical PT-symmetric structures", Opt. Lett. 32 (17), 2632-2634 (2007).

Alois Regensburger, Mohammad-Ali Miri, Christoph Bersch, Jakob Näger, Georgy Onishchukov, Demetrios N. Christodoulides, and Ulf Peschel, "Observation of Defect States in PT-Symmetric Optical Lattices", Phys. Rev. Lett. 110 (22), 223902 (2013).

S. Bittner, B. Dietz, U. Günther, H. L. Harney, M. Miski-Oglu, A. Richter, and F. Schäfer, "PT Symmetry and Spontaneous Symmetry Breaking in a Microwave Billiard", Phys. Rev. Lett. 108 (2), 024101 (2012).

Y. D. Chong, Li Ge, and A. Douglas Stone, "PT-Symmetry Breaking and Laser-Absorber Modes in Optical Scattering Systems", Phys. Rev. Lett. 106 (9), 093902 (2011).

N. M. Chtchelkatchev, A. A. Golubov, T. I. Baturina, and V. M. Vinokur, "Stimulation of the Fluctuation Superconductivity by PT Symmetry", Phys. Rev. Lett. 109 (15), 150405 (2012).

Stefan Weigert, "The physical interpretation of PT-invariant potentials", Czech. J. Phys. 54 (10), 1139-1142 (2004).

B. Bagchi, F. Cannata, and C. Quesne, "PT-symmetric sextic potentials", Phys. Lett. A 269 (2-3), 79-82 (2000).

Carl M. Bender and Maria Monou, "New quasi-exactly solvable sextic polynomial potentials", J. Phys. A: Math. Gen. 38 (10), 2179 (2005).

Spiros Konstantogiannis, "Quasi-exact solution of sextic anharmonic oscillator using a quotient polynomial", Journal for Foundations and Applications of Physics 6 (1), 17-34 (2019).

M. Moriconi, "Nodes of Wavefunctions", Am. J. Phys. 75 (3), 284-285 (2007).


Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers