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Abstract 
We study a very peculiar nonlinear oscillator with an external two period quasiperiodic 

excitation, being the golden mean the ratio between the two frequencies. The two period quasi 

periodic forcing is characterized by an infinite frequencies number. As a consequence, we find 

that the motion settles down in a two period quasi periodic atttractor for a wide excitation 

amplitude range. The competition between the two frequencies does not produce a closed 

curve but fills a well defined phase space region in the Poincarè section. This attractor 

somehow resembles strange nonchaotic attractors because both are characterized by 

quasiperiodic forcing. Using a suitable perturbation method, we can understand the new 

attractor most important characteristics and find an approximate solution for its dynamical 

behavior. Numerical simulations are used to check out the analytical investigation. 
 

Keywords:  Nonlinear dynamics; quasi periodic attractor; Poincarè section; perturbation 

method 

1. Introduction 

 Quasi-periodic behavior and their relations with chaotic dynamical systems have been 

extensively studied in the last years [1-2]. Gilsinn used a series expansion in order to obtain a higher 

order approximation for a quasiperiodic solutions for two weakly coupled van der Pol oscillators[3]. 

In a very interesting paper Venkatesan and  Lakshmanan [4] investigated nonlinear motion on a 

rotating parabola. They discovered remarkable behaviors and various bifurcations such as symmetry 

breaking, period doubling, and intermittency. They carefully considered a quasiperiodically driven 

rotating parabola system and the transition from two-frequency quasiperiodicity to chaotic behavior. 

As the driving parameter increases, a torus doubling bifurcation occurs with torus merging and 

transition from the merged torus to a strange nonchaotic attractor and at last transition from the 

strange nonchaotic attractor to a geometrically similar chaotic attractor. 
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Kuznetsov et al. [5] considered an autonomous three-dimensional system  and demonstrated 

quasiperiodic dynamics because of presence of two coexisting oscillatory components of 

incommensurate frequencies. The attractor is obviously a two-dimensional torus. Moreover they 

considered  charts of dynamical regimes on parameter planes. R. Vitolo et al.  [6] studied dissipative 

dynamical systems and quasi-periodic behavior. They used algorithms for the computation and 

continuation of invariant circles and of their bifurcations. Remarkable applications are given for 

quasiperiodic bifurcations of saddle-node, Hopf and period-doubling type. 

Hidaka et al. [7] studied the Arnold resonance web in a map generating invariant three-torus. 

They demonstrated that the quasi-periodic saddle-node bifurcations generate complex bifurcations 

and they occur when a stable and saddle invariant two-torus merge and disappear. At last just after 

the quasi-periodic saddle-node bifurcation, an intermittent torus can be observed.  

In a very interesting review paper, Prasad et al [8]  considered carefully strange nonchaotic 

attractor, SNAs. These amazing attractors are often observed in quasiperiodically driven nonlinear 

systems. Being geometrically fractal they can be considered strange attractors. Trajectories do not 

show exponential sensitivity to initial conditions because the largest Lyapunov exponent is zero or 

negative. Different experimental situations show SNAs in quasiperiodically driven mechanical 

systems, plasma discharges, various electronic systems and so on. Moreover they demonstrate the 

equivalence between a quasiperiodically driven system and the Schrödinger equation for a particle in 

a connected quasiperiodic potential, with a correspondence between the localized states of the 

quantum problem with SNAs in the connected classic dynamical system.  

At last they discuss the SNAs most important features, beginning from the different 

bifurcations or routes for the creation of such attractors and arriving at the dynamical transitions in 

quasiperiodically forced systems.  

In this paper we consider a weakly nonlinear oscillator with an external excitation with two 

frequencies Ω (ω and Ω are uncommensurable and their ratio is the golden mean, about 1.61803..) 

ܺ
··
ሺݐሻ ൅ ߱ଶܺሺݐሻ ൌ ܾܺଶሺݐሻ ൅ ܿܺଷሺݐሻ ൅  ሻ            (1a)ݐሺܨ

 

where 

ሻݐሺܨ ൌ ݐߗ൫ݏ݋݂ܿ ൅  ሻ൯                (1b)ݐሺ߱݊݅ݏܭ

The quasiperiodic forcing (1b) in equation (1) is motivated by the Arnold circle or standard 

map [9] and contain two principal frequencies Ω (the golden mean) and ω=1, but obviously there are 

infinite frequencies in its Fourier spectrum. We can consider this quasiperiodic forcing to be the 

suitable one when there are external excitations with distorted or deformed or twisted sinusoidal 

waves, because only in laboratory we are able to produce pure two period quasiperiodic forcing that 

is a two harmonics addiction. The function F(t) in Equation (1b) is shown in Fig. 1.  
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Note that the introduction of the slow time (3) implies that 
ௗ

dt
൫߰௡expሺെin߱ݐሻ൯ ൌ ቀെin߰ߗ௡ ൅ ௤ߝ ௗట೙

ௗ௧
ቁ expሺെin߱ݐሻ.          (5) 

Using Equation (4) and substituting into Equation (2) yields various equations for each harmonic n 

and for a fixed order of approximation on the perturbation parameter . 

For n=1, we get 

െ2݅߱߰ఛߝ௤ ൌ ሺ2ܾሻ߰଴߰ߝߝ௥ ൅ ሺ2ܾሻ߰ଶ߰ିଵߝଶ ൅ 3ܿ|߰|ଶ߰ߝଶ       (6) 

and , after setting q=2, r=1 for an adequate terms balance, we get for n=0, with,ߔ ൌ ߰଴ 

ߔ ൌ ௙

ఠమ ݐߗ൫ݏ݋ܿ ൅ ሻ൯ݐሺ߱݊݅ݏܭ ൅ ଶ௕

ఠమ |߰|
ଶ               (7) 

for n=2 

ଶܣ ൌ
ି௕

ଷఠమ ,   ߰ଶ ൌ  ଶ߰ଶ                  (8)ܣ

As we can see from Equation (5), we can derive a differential equation for the evolution of the  

complex amplitude ߰,  
ௗట

ௗ௧
ൌ ሺ݅ߙଵሻ߰ߔ ൅ ሺ݅ߚଵሻ|߰|ଶ߰,                (9) 

with 

ଵߙ  ൌ
௕

ఠ
,                         (10) 

ଵߚ   ൌ
ଷ௖

ଶఠ
െ ௕మ

ଷఠయ.                     (11) 

Substituting the polar form, 

߰ሺ߬ሻ ൌ  ሺ߬ሻ൯,                  (12)ߠሺ߬ሻexp൫݅ߩ

into Equation (9), and separating real and imaginary parts, we arrive at the following model system 
ௗఘ

ௗ௧
ൌ 0                      (13) 

ௗఏ

ௗ௧
ൌ ߔଵߙ ൅  ଶ.                  (14)ߩଵߚ

Taking into account Equations (4), (7), (8) and (12), the lowest order approximate solution of 

Equation (2) can be written as  

ܺሺݐሻ ൌ ݐሺ߱ݏ݋ሻܿݐሺߩ2 െ ሻߴ ൅ ߔ ൅ ݐሺെ2߱ݏ݋ଶܿߩଶܣ2 ൅ ሻߠ2 ൅  ଶሻ.   (15)ߝሺ݋

and Φ is given by Equation (7). We underline this result does not depend on the  quasiperiodic 

forcing chosen form, but the point here is that its infinite Fourier components mix up in order to 

produce a motion characterized by infinite frequencies. Without the nonlinear terms this result is not 

possible and in the linear case b=c=0 we get a closed curve in the Poincarè section. The validity of 

the approximate solution should be expected to be restricted on bounded intervals of the ݐ-variable 

and then on time-scale ݐ ൌ ܱ ቀଵ
ఌ
ቁ. If one wishes to construct approximate solutions on larger intervals 

such that ݐ ൌ ܱ ቀଵ
ఌ
ቁ then the higher terms will in general affect the solution and must be included. 

Moreover, the approximate solution (22) will be within ܱሺߝሻ of the true solution on bounded 

intervals of the ݐ-variable, and, if the solution is periodic, for all t. However we can trust excessively 

this approximate solution, because we neglected the fundamental resonance Fourier component of the 
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quasi periodic forcing. This component should be inserted into Equation (6) and the solution can 

become unstable if the quasiperiodic forcing is too strong..  

In the next section we will show that the approximate solution is able to catch the most 

important solution characteristics. 

The system (13-14) can be easily solved 

ሻݐሺߩ ൌ ଴ߩ ൌ  (16)                       ݐݏ݊݋ܿ

ሻݐሺߠ ൌ ݐ଴ଶߩଵߚ ൅ ׬ ߔ
௧
଴

ሺݐ′ሻ݀(17)                    .′ݐ 

We underline that the Integral  

ሻݐሺܫ ൌ ݂ ׬ ݏ݋ܿ
௧
଴ ൫ݐߗ′൅  (18)                    ′ݐሻ൯݀′ݐሺ߱݊݅ݏܭ

in (17) can not be written with elementary functions and the same for the approximate solution and 

its derivative. If we consider the solution 15 at the time t=k T, where T is  the golden mean period 

3.883022077… seconds and k a positive integer, we can  conclude that this solution is not clearly a 

closed curves, because there are many  frequencies coming from the quasiperiodic forcing in the 

equation (2) and mixing because of nonlinear terms. Roughly speaking the attractor thickness is 

depending on the ratio f/ω2 and we will corroborate that in the next section by the numerical 

simulation. 

 

3. Results from numerical simulation  

We investigate the motion  in the phase space with b=-0.1, c=0.01, f=0.11 and initial conditions 

X=2,0, Y=0,1. The orbit amplitude is clearly modulated, then we can investigate the Poincarè section 

(Fig. 2), strobing the solution every 3.883222077.. seconds(=), where Ω=φ= golden mean=1.618033 

989....  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The attractor Poincarè section with initial conditions X=2.0 and Y=0.0, and ω=1, b=-0.1, 

c=0.01, f=0.11, K=5. (solution strobed every T=2π/Ω=3.883222077 seconds). 
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ii) the approximate solution (Sect.2) should be improved because the quasiperiodic forcing gets a 

Fourier component in the fundamental resonance (ω=1) and we must consider that in our equations. 

 

iii) This attractor could be confused with a SNA, strange nonchaotic attractor, and we need a more 

detailed study about their Fourier spectra. 

 

iv) We think there are many possible physics applications out there and its our task to find them. 

Probably this attractor was already observed but neglected because if the quasi periodic forcing is 

very weak then the attractor can be confused with a closed curve in the Poincarè section. As a rule 

only laboratory produced quasiperiodic forcings are purely two period forcing that is the simple 

additions of two harmonics but in the wild quasiperiodic signals are always or usually characterized 

by an unlimited frequencies number. 

 

v) It is well known the equivalence between a quasiperiodically driven system and the Schrödinger 

equation for a particle in a suitable quasiperiodic potential, them a new field research is 

investigating the correlation between the localized states of the quantum problem with this attractor 

in the associated dynamical system. 
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