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Abstract 
Maxwell’s equations are derived from the curvature tensor and a vector potential. The results 

are combined with Einstein’s equations.  Complete solutions to the resulting equation yield 

simultaneous solutions to both Einstein’s and Maxwell’s equations. This is a classical 

theoretical unification of electromagnetism and gravitation. 
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  Since the geometrical general theory of relativity was published as a theory of gravitation 

[1], the notion that electromagnetism was also amenable to a classical, geometrical theory has been 

pursued in a variety of ways [2], including notable contributions by Weyl [3], Kaluza, and 

Schrödinger [4].  To date, however, the achievement of this goal is not generally accepted.  This is 

largely due to the fact that the metric tensor is symmetric while the electromagnetic field tensor in 

antisymmetric. This paper presents a geometrical theory of electromagnetism that is distinct from the 

various approaches developed by others and introduces the required antisymmetry in a 

straightforward way.  The result is that Maxwell’s equations follow, thus unifying the core of 

classical electromagnetic theory with Einstein’s classical gravitational theory.  The sole purpose of 

the present paper is to present this derivation. 

The present geometrical theory of electromagnetism begins with the conventional derivation of 

the fourth-rank curvature tensor R
  in four-dimensional spacetime [5].  The lower-case Greek 

suffixes take on the values 0,1, 2,3; downstairs suffixes denote covariant character; upstairs suffixes 

denote contravariant character. The summation convention for contraction over pairs of covariant 

and contravariant components with the same Greek suffix is used. 
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This derivation begins with a covariant vector A . The first and second covariant derivatives of 

the vector are : :A    where the colon symbol represents covariant differentiation.  Using the symbol 

  to denote the tensor preceding it with the suffixes   and   interchanged, the curvature tensor 

is defined in the following expression: 

 : : : : : :A A A A R
              . 

Only the interchange of   with   is used above. 

The derivation then employs a sum of the cyclic permutations (c.p.) of the three suffixes in the 

above equation 

 : : : : : : : : : : : : : : : :. .A A c p A A A A A A                              

  A R R R  
      . (0.1) 

With inherent symmetries in the curvature tensor, 

 0R R R  
      

and the right-hand side of Eq. (0.1) equals zero [6].   

The form of the left-hand side of Eq. (0.1) is simplified using the antisymmetric tensor formed 

from the covariant derivatives of the vector, : :B A A      .   With this tensor, the various second 

derivatives in Eq. (0.1) can be grouped pair-wise based on the suffixes of the second derivatives to 

become 

 : : : : . . 0B B B B c p            . (0.2) 

This result is a consequence solely of the spacetime geometry. The vector A  can be any vector and 

the result is independent of any physical units which the vector may have.  If the metric tensor is 

dimensionless and the vector A  has the units of the electromagnetic vector potential, which are

tesla meter in SI units [7], then the antisymmetric tensor B has units of the electromagnetic field 

and Eq. (0.2) gives two of Maxwell’s equations [8], [9]. 

The antisymmetric tensor formed from the covariant derivatives of a vectoris the same as the 

antisymmetric tensor formed from the ordinary derivatives of the vector, 
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 : : , , , ,A A A A A A A A 
                      

where a comma denotes ordinary differentiation and the 
  are Christoffel symbols of the second 

kind.  In similar fashion, it is interesting to write out Eq. (0.2) as follows: 

  : , , :
. . . .B c p A A A A c p 

          
       

 , , ,B B B B B B B B B     
                           

      , , ,B B B B B B B B B  
                        

 , . . 0B c p    . 

Thus, the gravitational field embodied in the Christoffel symbols does not enter into the Maxwell’s 

equations of Eq. (0.2). 

The remaining Maxwell’s equations arise following contraction over one suffix in the 

antisymmetric tensor with the suffix of the covariant differentiation in :B   using the contravariant 

metric tensor g  :  

 : 0g B J
   , (0.3) 

where 0  is the permeability of a vacuum [9], [10]. 

The electromagnetic current J  is then expressible in terms of the vector potential and the 

Ricci tensor [11]: 

 

    : :
: : : : 0:

g B A g A R A A A R A J     
           

       , 

where  is the covariant D’Alembertian operator such that :
:A A

   .  This result is general for 

the vector potential A  in any gauge.  The result is simplified in the covariant Lorentz gauge for 

which : 0A 
  : 

 0J A A R
     . (0.4) 
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Unlike the first two Maxwell’s equations, the source term equations of Eq. (0.3) and Eq. (0.4) 

do depend on the curvature.  There is curvature at a point if there is any matter at that point, matter 

being any matter-energy aside from the gravitational field.  In the case where sources are present at a 

point, the curvature obtains contributions due not only from the electromagnetic field but also from 

the masses of the charged particles of the current.  In the case where no sources are present, no other 

matter is present, and only the free electromagnetic field is present, the curvature obtains 

contributions solely from the free electromagnetic field and Eq. (0.4)  becomes 

 0 A A R
   . 

These results can be applied in Einstein’s equations for the gravitational field (neglecting the 

cosmological constant), 

 
1

2
R Rg T     (0.5) 

Here g  is the metric tensor, R  is the scalar curvature g R
 , T  is the matter-energy tensor, and 

  is the Einstein gravitational constant that has units of inverse force and equals 
4 43 18 2.08 10G c N    , where G  is Newton’s constant of gravitation and c  is the speed of light 

in a vacuum [11].  Using Eq. (0.4), the inner product of a vector potential A  with Eq. (0.5) yields 

 0

1

2
J A RA A T       . 

This equation can be solved for the vector potential, 

 
 02 J A A T

A
R


  



  
  . 

This result cannot become singular when the scalar curvature is zero.  This is because this equation is 

applicable only when there is matter at least in the form of an electromagnetic field; the curvature 

cannot then be zero. 

 

At a point where the only matter-energy is the free electromagnetic field, the matter-energy 

tensor is the electromagnetic stress-energy tensor [12], 

 
0

1 1

4
T B B g B B 
    

   
 

. 
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This stress-energy tensor depends only upon the metric, the permeability constant, and derivatives of 

the vector potential.  Given the constants, Einstein’s equations for the gravitational field now yield a 

differential equation for the vector of the free electromagnetic field, 

     : : :
: : : : :

0

1
2

4
0

A A A A A A g A A A A

A
R

      
           






              . 

This equation depends, also, on the metric tensor.  Thus, complete solutions to this equation 

yield simultaneous solutions to both Einstein’s and Maxwell’s equations for the free electromagnetic 

field.  At points where the current is 0J  , the differential equation becomes more complicated and 

may depend upon additional constants, such as mass, and particle velocities associated with the 

current at such points that may contribute to the matter-energy tensor. 

The results presented in this paper employ only the well-established geometric interpretation of 

general relativity and the conventional use of a vector potential for the electromagnetic field. 
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