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Abstract

We consider the nonlinear Schrodinger equation in 2+1 dimensions and an external periodic
excitation in parametric resonance with the frequency of a generic mode. Using an adequate
perturbation method we get two coupled equations for the amplitude and phase. We show
frequency-response curves and demonstrate the existence for the focusing case of a reverse
infinite-period bifurcation when the parametric excitation increases its value. The same
bifurcation is possible even in the defocusing case but for a different excitation amplitude
value.
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1. Introduction

The nonlinear Schrodinger equation, NLSE, is probably the most known and studied nonlinear
equation,
i, + Dy + s|P|°D =0, (1)
where @ = @(x, t)is a suitable complex function,s = +1 (s=+/ focusing or s=-/ defocusing
case). Among its physical applications we remember small amplitude gravity waves, Bose-Einstein
condensates in highly anisotropic cigar shaped traps or the propagation of light in nonlinear optical
fibres and the propagation of Davydov alpha-helix solitons with connected energy transport along
molecular chains[1-6]. The case s=+1 is called focusing and there are bright solitons, localized and
with spatial fading in the direction of infinity as well as breather solutions. In the other defocusing
case, s=-1, we can find dark solitons, with a local spatial dip in amplitude, that is constant at infinity.
Moreover, the NLSE could explain the rogue waves occurrence [7]. In the last years many papers
performed bifurcations and symmetry breaking analysis for the NLSE [8-15].
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A lot of papers consider the 1+1 dimensions case but far fewer papers are devoted to the NLSE in
2+1 dimensions[16]

Dy + By + Dy, + 5|P|*P =0 (2)
In this paper we consider its nonlinear behavior when there is a parametric resonance
i®; + Dpy + Dy, + 5|D|12P = fexp(—idt + 2iK, X + 2iK,Y) 3)

where f is the parametric excitation amplitude, @is the function ® complex conjugate
and
© = K2 +K? 4

Therefore, the external periodic excitation is in parametric resonance ({2 ~2w) with the
frequency of a generic mode. In Section 2, using an adequate perturbation method [17] we get an
approximate solution and two coupled equations for the solution amplitude and phase,

In Section 3, we consider frequency-response curves and demonstrate the possibility of a reverse
infinite-period bifurcation. If we increase the parametric excitation from very small values, at the
beginning we observe the solution oscillates with its natural frequency but suddenly when the
excitation amplitude reaches a critical value the solution begins to oscillate with a very low frequency
connected to the external excitation (infinite period or zero frequency bifurcation). If we carefully
choose the initial conditions the solution appears immobile, frozen, insensitive to the parametric
excitation. For higher excitation values the frequency increases and the system behavior is
characterized by a modulated motion. We discuss in some detail the difference between the focusing
and defocusing mode showing how even in the last case a reverse infinite-period bifurcation is
possible but with different parameters values. In Section 4 we discuss how this paper could be the
starting point to understand nonlinear vibrations with various resonances in the NLSE in 2+1

dimensions.

2. Building an approximate solution
In this section we consider a resonance with the external parametric excitation and
scale the forcing term f as £2f where ¢ is our bookkeeping device and introduce the slow time
T = £2t, (5
because we need to look on larger time scales, in order to detect the amplitude modulation behavior.
The approximate solution @ (x, y, t) of equation (3) can be expressed in the following form
D (x,y,t) = ¥ (r)exp(ia) (6)
@ =KX +Ky—>t (7)
and the boundary conditions are

®00,y,t) =Ly, ) 0<y<L K, = Z”Tl” nyinteger (8) @(x,0,t) = @(x,L,t) 0 <x <L

2n,m .
K, = LZ , ninteger ©)
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In order to express the nearness of the excitation frequency Q to the system frequency w, we
define a detuning parameter ¢ through the relation

Wy = §+ g0 (10)
where
n?n?  nin?
n= (nlrnZ) (‘)ﬂ = 12 + iz (11)

We have assumed only a mode in the expansion, because we suppose that the system is excited
near the natural frequency of a specific linear mode and that mode is not involved in an internal
resonance with any other mode. Usually, we can consider that the modes that are not directly excited
by an external source or indirectly through an internal resonance will decay with time. Note that the
variable change (5) implies that

2 (o (120)) = (120 + 2 2) o (-2, o

The temporal rescaling (5) allow us to find the asymptotic behavior of the solution, when the
nonlinear effects can modify the nonlinear amplitude. The assumed solution (6) is used for the
elimination of the predominant linear part of the equation (3) and it allows to calculate the amplitude
modulation given by the parametric excitation.

After inserting the assumed solution (6) in the complete equations (3), we obtain the satisfied linear

equation
(w, — KZ — KZ)¥ = 0, (order €°), (13)
If we consider equations (3) at the order £2 then we find that the function ¥ () satisfies the
nonlinear differential equation
¥, — o¥ + s|V|?¥ = f¥ (14)
Expressing the complex-valued function ¥ into its amplitude and phase
¥ = pexp(if) (15)
we arrive at the model equations
L+ fpsin(20) = 0 (16)
z—i —sp?+ fcos(20) +a =0 (17)

This model system (16-17) describes the amplitude evolution according to our starting
assumptions. We observe that the validity of the approximate solution (6) should be expected to be

. ) ) ) 1 ..
restricted on bounded intervals of the t-variable and on time-scale t = O (5_2)’ otherwise if we want

to find solutions on intervals such that T = O G) , then the approximate solution (6) loses its validity.

In the next section we will find the possibility of a reverse infinite-period bifurcation both for the
focusing case(s=+1) and the defocusing one(s=-1).
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3. A reverse infinite-period bifurcation
Periodic solutions of the complete system described by equations (3) correspond to the fixed points
of the model system (16-17), which are obtained by the conditions

dp/dt = d6/dt = 0. (17b)
Note that the solution exists in the following cases
0 =0 ,p = m, f > —o (focusing case), Pi¢ (18)
0z = 0,p5 =+/(=0 — f) , (0 + f) < 0 (defocusing case), Pip (19)
O = g , PE = m, o = f (focusing case), Por (20)
O = g, PE = m, f > o(defocusing case), Pop (21)

We can easily determine their possible stability and through the jacobian matrix we get for the
eigenvalues
A% = —4spifcos(20g) (22)
In the focusing case s=+1, P is an elliptic point and P, a saddle point and on the contrary in
the defocusing case Pip is a saddle point and P,p an elliptic point. From equation (22) we can get
the small oscillations frequency around the elliptic point

& = 2pe/(F) (23)

Using the trigonometric identity, we arrive at the frequency-response equation
o = sif +spi, (24)
where pp is now the equilibrium point amplitude, s=-/ for solutions with 8y =0 and

moreovers=+/ for the O = gsolution.(Fig. 1 and Fig. 2)

Around the elliptic point we can get an infinite-period bifurcation but it is more convenient if
we consider increasing parametric excitation values so that we can get a  reverse  infinite-period
bifurcation.

We observe the following scenario (focusing case,

For o0 < 0 the excitation frequency is slightly greater than the double of ®, near the equilibrium
point P;r). We observe the following scenario:
1) when f=0, no parametric excitation, the wave amplitude is constant
i1) when the excitation is weak, there are no equilibrium points because of (18) and (20), the wave
amplitude begins to oscillate with an amplitude proportional to the excitation amplitude f and with

the natural frequency o or better

o= o+ p? (25)
iii) if the external excitation increases and reaches the critical value
fc = —o, (26)
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Figure 1: Frequency-response curve for the focusing case( {=0.08). The upper branch correspond to
the saddle point and the lower branch to the elliptic point. The infinite period bifurcation is possible
when the frequency is negative for the lower branch
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Figure 2: Frequency response curve for the defocusing case (/=0.08). The upper branch correspond
to the elliptic point and the lower branch to the saddle point. The infinite-period bifurcation is
possible when the frequency is positive (upper branch)
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the oscillation frequency decreases and the wave seems to collapse but actually it begins a very slow
oscillation, dies and is born again, with a large period, a reverse infinite-period bifurcation
occurs(Fig. 3).
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Figure 3: Frequency near the bifurcation point (fc=0.02). The behavior follows a square root law.

We can estimate the oscillation period 7 assuming p = pg in our calculations

_2m _ 21 do) _ 4/ (2)
T= 2 fO spg—o—fcos(20)  JFIJUF-fo) (26)

iv) if the initial condition for the wave amplitude is carefully tuned, that is it corresponds to P,z then
the wave amplitude seems immobile, frozen and insensitive to the external excitation with no
oscillation.

v) suddenly beyond a critical value f = —o and for higher external excitation values , the solution is

0= /(f(f+a))zf 27

We underline the same scenario is possible even for the defocusing case near the point P,p when the

slowly modulated with a frequency

excitation frequency Q is slightly smaller than the natural frequency w. All the above statements can
be easily checked considering the model system (16-17) gets an energy-like function E (p, 6)

E(p,0) =3p* —0p® — fp?cos(26) - =0 (28)
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We observe that every function in the form AE(p, 8), with Areal number, can be used as energy
function. In the focusing case we can taked=1 , but for the defocusing case the better choice is A=-1,

so that the elliptic point P,p corresponds to a minimum.

Figure 4: Level curves for the function E(p, 9) in the focusing case, /=0.08, 6=-0.02. We can
observe the orbits around the elliptic point and the bottleneck account able
for the frequency lowering

In Fig. 4, we show the level curves for the energy function (28) near the equilibrium point (18) and
we can understand the infinite-period bifurcation is connected to the “bottleneck” we can see in the

figure. The fixed point (18) slows the solution motion near it and a lower frequency is excited.

4. Conclusion

We investigated the nonlinear Schrodinger equation in 2+1 dimensions with an external periodic
excitation in parametric resonance with a generic mode frequency. We constructed an approximate
solution with a suitable perturbation method, previously used for other nonlinear partial differential
equations. Two coupled nonlinear equations describe the temporal evolution for the solution
amplitude and phase. We show frequency-response curves and demonstrate the existence of a reverse
infinite-period bifurcation when the parametric excitation increases its value. The same bifurcation is
possible even in the defocusing case but for a different excitation amplitude value. This perturbation
method could be applied in order to study other important resonances for the NLSE both in one
dimension and two dimensions case.
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