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Abstract 
We consider the nonlinear Schrodinger equation in 2+1 dimensions and an external periodic 

excitation in parametric resonance with the frequency of a generic mode. Using an adequate 

perturbation method we get two coupled equations for the amplitude and phase. We show 

frequency-response curves and demonstrate the existence for the focusing case of a reverse 

infinite-period bifurcation when the parametric excitation increases its value. The same 

bifurcation is possible even in the defocusing case but for a different excitation amplitude 

value. 

Keywords:  nonlinear Schrodinger equation in 2+1 dimensions; parametric excitation; 

infinite-period bifurcation; vibration control 

1. Introduction 

 The nonlinear Schrodinger equation, NLSE, is probably the most known and studied nonlinear 

equation, 

௧ߔ݅ ൅ ௫௫ߔ ൅ ߔଶ|ߔ|ݏ ൌ 0,                    (1) 

where ߔ ൌ ,ݔሺߔ ݏ,ሻis a suitable complex functionݐ ൌ േ1 (s=+1 focusing or  s=-1 defocusing 

case). Among its physical applications we remember small amplitude gravity waves, Bose-Einstein 

condensates in highly anisotropic cigar shaped traps or the propagation of light in nonlinear optical 

fibres and the propagation of  Davydov alpha-helix solitons with connected energy transport along 

molecular chains[1-6]. The case s=+1 is called focusing and there are bright solitons, localized and 

with spatial fading in the direction of infinity as well as breather solutions. In the other defocusing 

case, s=-1, we can find dark solitons, with a local spatial dip in amplitude, that is constant at infinity. 

Moreover, the NLSE could explain the rogue waves occurrence [7]. In the last years many papers 

performed bifurcations and symmetry breaking analysis for the NLSE [8-15]. 
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A lot of papers consider the 1+1 dimensions case but far fewer papers are devoted to the NLSE in  

2+1 dimensions[16] 

௧ߔ݅ ൅ ௫௫ߔ ൅ ௬௬ߔ ൅ ߔଶ|ߔ|ݏ ൌ 0                     (2) 

In this paper we consider its nonlinear behavior when there is a parametric resonance 

௧ߔ݅   ൅ ௫௫ߔ ൅ ௬௬ߔ ൅ ߔଶ|ߔ|ݏ ൌ ݐߗ൫െ݅݌ݔ݁~ߔ݂ ൅ ௫ܺܭ2݅ ൅   ௬ܻ൯                           (3)ܭ2݅

where f is the parametric excitation amplitude, ߔ~is the function Φ complex conjugate 

and 

߱ ൌ ௫ଶܭ ൅   ௬ଶ                      (4)ܭ

Therefore, the external periodic excitation is in parametric resonance (ߗ ∼ 2߱) with the            

frequency of a generic mode. In Section 2, using an adequate perturbation method [17] we get an 

approximate solution and two coupled equations for the solution amplitude and phase, 

In Section 3, we consider frequency-response curves and demonstrate the possibility of a reverse 

infinite-period  bifurcation. If we increase the parametric excitation from very small values, at the 

beginning we observe the solution oscillates with its natural frequency but suddenly when the 

excitation amplitude reaches a critical value the solution begins to oscillate with a very low frequency 

connected to the external excitation (infinite period or zero frequency bifurcation). If we carefully 

choose the initial conditions the solution appears immobile, frozen, insensitive to the parametric 

excitation. For higher excitation values the frequency increases and the system behavior is 

characterized by a modulated motion. We discuss in some detail the difference between the focusing 

and defocusing mode showing how even in the last case a reverse infinite-period bifurcation is 

possible but with different parameters values. In Section 4 we discuss how this paper could  be the 

starting point to understand nonlinear vibrations with various resonances in the NLSE in 2+1 

dimensions. 

 

2. Building an approximate solution  
In this section we consider a resonance with the external parametric excitation and  

scale the forcing term ݂ as ߝଶ݂ where ε is our bookkeeping device and introduce the slow time 

߬ ൌ  (5)                   ,ݐଶߝ

because we need to look on larger time scales, in order to detect the amplitude modulation behavior. 

The approximate solution ߔሺݔ, ,ݕ  ሻ of equation (3)  can be expressed in the following formݐ

,ݔሺߔ ,ݕ ሻݐ ൌ  ሻ                 (6)ߙሺ݅݌ݔሺ߬ሻ݁ߖߝ

ߙ     ൌ ௫ܺܭ ൅ ݕ௬ܭ െ
ఆ

ଶ
 (7)                     ݐ

and the boundary conditions are 

,ሺ0ߔ ,ݕ ሻݐ ൌ ,ܮሺߔ ,ݕ ሻ 0ݐ ⩽ ݕ ⩽ ௫ܭ ܮ ൌ
ଶ௡భగ

௅
 , n1 integer (8)     ߔሺݔ, 0, ሻݐ ൌ ,ݔሺߔ ,ܮ ሻ 0ݐ ⩽ ݔ ⩽ ܮ

௬ܭ  ൌ
ଶ௡మగ

௅
,  n2 integer                    (9) 
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In order to express the nearness of the excitation frequency Ω to the system  frequency ω, we 

define a detuning parameter σ through the relation 

߱௡ ൌ
ఆ

ଶ
൅  (10)                        ߪଶߝ

where 

݊ ൌ ሺ݊ଵ, ݊ଶሻ  ߱௡ ൌ
௡భ
మగమ

௅మ
൅ ௡మ

మగమ

௅మ
                   (11) 

We have assumed only a mode in the expansion, because we suppose that the system is excited 

near the natural frequency of a specific linear mode and that mode is not involved in an internal 

resonance with any other mode. Usually, we can consider that the modes that are not directly excited 

by an external source or indirectly through an internal resonance will decay with time. Note that the 

variable change (5) implies that 
ௗ

ௗ௧
൬ߖexp ቀെ݅ ఆ

ଶ
ቁ൰ݐ ൌ ቀെ݅ ఆ

ଶ
ߖ ൅ ଶߝ ௗఅ

ௗఛ
ቁ ݌ݔ݁ ቀെ݅ ఆ

ଶ
 ቁ.           (12)ݐ

The temporal rescaling (5) allow us to find the asymptotic behavior of the solution, when the 

nonlinear effects can modify the nonlinear amplitude. The assumed solution (6) is used for the 

elimination of the predominant linear part of the equation (3) and it allows to calculate the amplitude 

modulation given by the parametric excitation. 

After inserting the assumed solution (6) in the complete equations (3), we obtain the satisfied linear 

equation 

൫߱௡ െ ௫ଶܭ െ ߖ௬ଶ൯ܭ ൌ 0, (order ߝ଴),                (13) 

If we consider equations (3) at the order ߝଶ then we find that the function ߖሺ߬ሻ satisfies the 

nonlinear differential equation 

ఛߖ݅  െ ߖߪ ൅ ߖଶ|ߖ|ݏ ൌ  (14)                 ~ߖ݂

Expressing the complex-valued function ߖ into its amplitude and phase 

ߖ ൌ  ሻ                  (15)ߠሺ݅݌ݔ݁ߩ

we arrive at the model equations 

   
ௗఘ

ௗఛ
൅ ሻߠሺ2݊݅ݏߩ݂ ൌ 0                (16) 

ௗఏ

ௗఛ
െ ଶߩݏ ൅ ሻߠሺ2ݏ݋݂ܿ ൅ ߪ ൌ 0               (17) 

This model system (16-17) describes the amplitude evolution according to our starting 

assumptions. We observe that the validity of the approximate solution (6) should be expected to be 

restricted on bounded intervals of the τ-variable and on time-scale ݐ ൌ ܱ ቀ ଵ
ఌమ
ቁ, otherwise if we want 

to find solutions on intervals such that ߬ ൌ ܱ ቀଵ
ఌ
ቁ , then the approximate solution (6) loses its validity. 

In the next section we will find the possibility of a reverse infinite-period bifurcation both for the 

focusing case(s=+1) and the defocusing one(s=-1). 
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3. A reverse infinite-period bifurcation 
Periodic solutions of the complete system described by equations (3)  correspond to the fixed points 

of the model system (16-17), which are obtained by the conditions 

ߩ݀ ⁄ݐ݀ ൌ ߠ݀ ⁄ݐ݀ ൌ 0.                 (17b) 

Note that the solution exists in the following cases 

ாߠ ൌ ாߩ , 0 ൌ ඥሺ݂ ൅ ݂ ,ሻߪ ⩾ െߪ (focusing case), P1F           (18) 

ாߠ  ൌ ாߩ ,0 ൌ ඥሺെߪ െ ݂ሻ , ሺߪ ൅ ݂ሻ ൑ 0 (defocusing case), P1D          (19) 

ாߠ  ൌ
గ

ଶ
ாߩ ,  ൌ ඥሺെ݂ ൅ ߪ ,ሻߪ ൒ ݂ (focusing case), P2F           (20) 

ாߠ ൌ
గ

ଶ
ாߩ , ൌ ඥሺെߪ ൅ ݂ሻ, ݂ ⩾  P2D          (21) ,(defocusing case) ߪ

 We can easily determine their possible stability and through the jacobian matrix we  get for the 

eigenvalues   

ଶߣ ൌ െ4ߩݏா
ଶ݂ܿݏ݋ሺ2ߠாሻ               (22) 

 In the focusing case s=+1, P1F is an elliptic point and P2F a saddle point and on the  contrary in 

the defocusing case P1D is a saddle point and P2D an elliptic point. From  equation (22) we can get 

the small oscillations frequency around the elliptic point 

ൌ~ߗ  ாඥሺ݂ሻ                  (23)ߩ2

  Using the trigonometric identity, we arrive at the frequency-response equation 

ߪ ൌ ଵ݂ݏ ൅ ாߩݏ
ଶ,                  (24) 

 where ߩா is now the equilibrium point amplitude, s=-1 for solutions with ߠா ൌ 0 and 

 moreovers=+1 for the  ߠா ൌ
గ

ଶ
solution.(Fig. 1 and Fig. 2) 

 Around the elliptic point we can get an infinite-period bifurcation but it is more  convenient if 

we consider increasing parametric excitation values so that we can get  a reverse infinite-period 

bifurcation. 

 We observe the following scenario (focusing case,  

For ߪ ൏ 0 the excitation frequency is slightly greater than the double of ω, near the equilibrium 

point P1F). We observe the following scenario: 

i) when f=0, no parametric excitation, the wave amplitude is constant 

ii) when the excitation is weak, there are no equilibrium points because of (18) and (20), the wave 

amplitude begins to oscillate with an amplitude proportional to the excitation amplitude f and with 

the natural frequency ω or better 

~߱ ൌ ߱ ൅  ଶ                      (25)ߩ

iii) if the external excitation increases and reaches the critical value 

஼݂ ൌ െ(26)                        ,ߪ 
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Figure 1: Frequency-response curve for the focusing case( f=0.08). The upper branch correspond to 

the saddle point and the lower branch to the elliptic point.  The infinite period bifurcation is possible 

when the frequency is negative for the lower branch 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Frequency response curve for the defocusing case (f=0.08). The upper branch correspond 

to the elliptic point and the lower branch to the saddle point. The infinite-period bifurcation is 

possible when the frequency is positive (upper branch) 
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the oscillation frequency decreases  and  the wave seems to collapse but actually it begins a very slow 

oscillation, dies and is born again, with a large period, a reverse infinite-period bifurcation 

occurs(Fig. 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Frequency near the bifurcation point (fC=0.02). The behavior follows a square root law. 

  

 

We can estimate the oscillation period T assuming ߩ ൎ  ா in our calculationsߩ

ܶ ൌ ଶగ

ఆ~
ൌ ׬

ሺௗఏሻ

௦ఘಶ
మିఙି௙௖௢௦ሺଶఏሻ

ൌ గඥሺଶሻ

ඥሺ௙೎ሻඥሺ௙ି௙೎ሻ

ଶగ
଴            (26) 

iv) if the initial condition for the wave amplitude is carefully tuned, that is it corresponds to P1F, then 

the wave amplitude seems immobile, frozen and insensitive to the external excitation with no 

oscillation. 

v) suddenly beyond a critical value ஼݂ ൌ െߪ and for higher external excitation values , the solution is 

slowly modulated with a frequency 

ൌ~ߗ ට൫݂ሺ݂ ൅ ሻ൯ߪ ൎ ݂                (27) 

We underline the same scenario is possible even for the defocusing case near the point P2D,when the 

excitation frequency Ω is slightly smaller than the natural frequency ω. All the above statements can 

be easily checked considering the model system (16-17) gets an energy-like function ܧሺߩ,  ሻߠ

,ߩሺܧ ሻߠ ൌ ௦

ଶ
ସߩ െ ଶߩߪ െ ሻ  ௗாߠሺ2ݏ݋ଶܿߩ݂

ௗఛ
ൌ 0             (28) 
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