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Abstract 

The quantum conditions are applied to yield a form of the covariant momentum. This 

momentum is contrasted with the covariant velocity in classical gravitational theory. The 

quantum momentum is then renormalized. This allows separation of mass and velocity, which 

velocity is considered equivalent to the classical velocity. The renormalization thereby yields 

two forms for the gravitational metric that are related by a gauge transformation of the first kind. 

The gauge entities in the metric are shown to be directly applicable to gauge generators in the 

Standard Model. 
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INTRODUCTION 

This paper presents a framework for introducing the gauge fields of the Standard Model into the 

description of the gravitational field provided by the General Theory of Relativity. This is 

accomplished by deriving the metric tensor of spacetime through constraints. These specify the 

spacetime as a surface in a system of rectilinear coordinates greater in number than the number of 

spacetime coordinates. Quantum conditions apply to the rectilinear coordinates. To be meaningful, 

the quantum conditions require quantum states of momentum. Separating mass from momentum, 

thereby describing velocity of particles with mass, requires renormalization of the quantum 

momentum states. This is done by restricting the range of integration of quantum densities. As a 

result, the scale of the quantum states is changed by a multiplicative factor. If the factor is the same 

for all momentum components, the equations of motion for the resulting massive particle include 
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both the gauge field and the gravitational contributions. The way the gauge field generators of the 

Standard Model are related to the gauge forms introduced into general relativity is shown explicitly. 

 

I. QUANTUM CONDITIONS 

Let 𝑦𝐼 denote the coordinates of the rectilinear space with more dimensions than spacetime, and 𝑥𝐼 

the coordinates in this space that coincide with spacetime. Let 𝑥𝜇 (𝜇 = 0,1,2,3) denote the 

curvilinear spacetime coordinates. The covariant metric tensor is 

 𝑔𝜇𝜈 = 𝑥𝐼 ,𝜇𝑥
𝐽
,𝜈𝑔𝐼𝐽, (1) 

where the 𝑔𝐼𝐽 are constants, the subscript commas denote ordinary differentiation, and the 𝑥𝐼,𝜇 are 

transformation laws that embody the equations of constraint that specify the spacetime coordinates 

[1].  In four-dimensional (4-d) spacetime, the metric has a signature, (+,−,−,−), appropriate for 

one time (+) coordinate and three spatial (-) coordinates. 

The coordinate 𝑥𝐼 is considered to be conjugate to a quantum momentum operator �̂�𝐼, 

 �̂�𝐼 = −𝑖ℏ�̂�𝐼, 

where 𝑖 = √−1, ℏ is the reduced Planck’s constant 
ℎ

2𝜋
, and �̂�𝐼 operates to take the partial derivative 

with respect to 𝑥𝐼.  The momentum operator gives the quantum conditions by its commutation 

properties with the coordinates, 

 [𝑥𝐼 , �̂�𝐽] = 𝑥𝐼�̂�𝐽 − (�̂�𝐽𝑥
𝐼 + 𝑥𝐼�̂�𝐽) = 𝑖ℏ𝛿𝐽

𝐼, 

where 𝛿𝐽
𝐼 is the Kroenecker delta.  The eigenfunction of the quantum momentum operator is 𝛹, with 

eigenvalues 𝑝𝐼.  These eigenvalues are constants.   

The eigenfunction is normalized to unity over the entire 4-d spacetime volume 𝛺 of differential 

volume element 𝑑𝑉, 

 ∫ 𝑑𝑉𝛹∗𝛹
𝛺

0
= 1, 

where 𝛹∗ is the complex conjugate of 𝛹. In cases beyond the scope of the present paper, 𝛹 becomes 

a multi-component wavefunction, written as a vector.  So 𝛹∗ is replaced therein by 𝛹†, the complex 

transpose of the wavefunction. 

The volume of spacetime is not the entire volume of the rectilinear space given by the 𝑦𝐼.  Rather, 

it is the volume in the full rectilinear space formed by the 𝑥𝐼.  This volume is a functional of the 

spacetime coordinates 𝑥𝜇 by virtue of the equations of constraint.  Set this functional of the 𝑥𝜇 to be 

𝛺[𝑓(𝑥𝜇)], where 𝑓(𝑥𝜇) represents the equations of constraint.  A suitable form for the eigenfunction 

is 
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 𝛹(𝑥𝐼) = 𝛺−
1

2 𝑒𝑥𝑝 [
𝑖𝑥𝐼𝑝𝐼

ℏ
]. (2) 

The corresponding spacetime momenta are 𝑝𝜇 = 𝑥𝐼,𝜇𝑝𝐼.  As the spacetime coordinates are 

curvilinear, the 𝑝𝜇 can change with the coordinates because the 𝑥𝐼 ,𝜇 can change with the coordinates.  

In the quantum case, the operator is transformed rather than the eigenvalues.  This allows the 

operator �̂�𝜇 = 𝑥𝐼 ,𝜇�̂�𝐼 to act on the wavefunction (2).  The expectation value of the momentum is 

 𝑝𝜇 = ∫ 𝑑𝑉𝛹†𝑥𝐼,𝜇�̂�𝐼𝛹
𝛺

0
= 𝑝𝐼 ∫ 𝑑𝑉𝛹†𝑥𝐼 ,𝜇𝛹

𝛺

0
. (3) 

The quantity 𝛹†𝑥𝐼 ,𝜇𝛹 is a density.  As 𝑥𝐼 ,𝜇 takes no derivative in the integrand, Eq. (3) becomes 

 𝑝𝜇 = 𝑝𝐼 ∫ 𝑑𝑉𝛺−1𝑥𝐼 ,𝜇
𝛺

0
. 

The integrand itself is a function only of the 𝑥𝐼.  By the fundamental theorem of integral calculus, the 

𝑥𝜇-dependence enters through the upper limit, 𝛺[𝑓(𝑥𝜇)], provided only that 𝑥𝐼𝛺−1 is a total 

derivative of some function 𝑁𝐼(𝑥𝐼) with 𝑉.  Then 

 ∫ 𝑑𝑉𝛺−1𝑥𝐼
𝛺

0
= ∫ 𝑑𝑉

𝑑𝑁𝐼

𝑑𝑉

𝛺

0
= 𝑁𝐼{𝛺[𝑓(𝑥𝜇)]} − 𝑁𝐼(0) 

 = 𝑁𝐼(𝑥𝜇) − 𝑐𝑜𝑛𝑠𝑡, (4) 

where 𝑁𝐼(0) is constant.  This allows the transformation law to be a function only of the 𝑥𝜇, and to 

be consistent with the equations of constraint 𝑓(𝑥𝜇).  Specifically, 

 𝑥𝐼 ,𝜇(𝑥
𝜈) = [𝑁𝐼(𝑥𝜈)],𝜇. (5) 

Then Eq. (3) yields the spacetime momentum expectation values 

 𝑝𝜇(𝑥
𝜈) = 𝑝𝐼[𝑁

𝐼(𝑥𝜈)],𝜇 = 𝑝𝐼𝑥
𝐼
,𝜇(𝑥

𝜈). 

II. CLASSICAL VELOCITIES 

With the metric tensor, the classical gravitational equations of motion for a massive particle are 

 
𝑑𝑣𝜇

𝑑𝑠
= 𝛤𝜇𝜈

𝜏 𝑣𝜏𝑣
𝜈 = 𝛤𝜆𝜇𝜈𝑣

𝜆𝑣𝜈 

along a timelike geodesic path of squared differential interval 𝑑𝑠2 = 𝑔𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈, and for which the 

velocities are 𝑣𝜇 = 𝑔𝜇𝜈
𝑑𝑥𝜈

𝑑𝑠
= 𝑔𝜇𝜈𝑣

𝜈. The geodesic equations of motion are consistent with the 

principal of least action, and with the vanishing of the covariant total derivative of velocity, 

 
𝐷𝑣𝜇

𝑑𝑠
= 𝑣𝜇:𝜈𝑣

𝜈 = (𝑣𝜇,𝜈 − 𝛤𝜇𝜈
𝜆 𝑣𝜆)𝑣

𝜈 =
𝑑𝑣𝜇

𝑑𝑠
− 𝛤𝜆𝜇𝜈𝑣

𝜆𝑣𝜈 = 0. 

Here the subscript colon denotes covariant differentiation and the 𝛤𝜆𝜇𝜈 are the Christoffel symbols of 

the first kind, 
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 𝛤𝜆𝜇𝜈 = (
1

2
) (𝑔𝜆𝜇,𝜈 + 𝑔𝜈𝜆,𝜇 − 𝑔𝜇𝜈,𝜆). (6) 

Note that using the covariant derivative of the contravariant velocity, 𝑣𝜇:𝜈 = 𝑣𝜇,𝜈 + 𝛤𝛼𝜈
𝜇 𝑣𝛼, gives 

 𝑔𝜇𝜆
𝑑𝑣𝜆

𝑑𝑠
= −𝑔𝜇𝜆𝛤𝛼𝜈

𝜆 𝑣𝛼𝑣𝜈 = −𝛤𝜇𝛼𝜈𝑣
𝛼𝑣𝜈, 

where the 𝛤𝜇𝜈
𝜏 = 𝑔𝜏𝜆𝛤𝜆𝜇𝜈 are Christoffel symbols of the second kind, or metric connections. Setting 

𝑣𝜇:𝜈𝑣
𝜈 = 𝑔𝜇𝜆𝑣

𝜆
:𝜈𝑣

𝜈 gives two expressions for the equations of motion. 

As characteristic of a gravitational field description, the classical geodesic equations of motion do 

not involve mass explicitly.  The quantum momentum 𝑝𝜇 does not contain a definition of velocity 𝑣𝜇.  

This is because mass is not separable from momentum using the quantum conditions alone.  In order 

to compare the quantum momentum to the classical velocity, a mass 𝑚 is required.  As the classical 

velocity 𝑣𝜇 is dimensionless, the speed of light 𝑐 is needed to give traditional momentum units. Then 

a classical momentum defined as 𝑚𝑐𝑣𝜇 can be compared to 𝑝𝜇.  

III. RENORMALIZATION 

In order to establish mass with a timelike interval, the spacetime field is renormalized.  This is 

done by evaluating the integral in Eq. (3) between limits 𝐿1 and 𝐿2, where 0 ≤ 𝐿1 ≤ 𝐿2 ≪ 𝛺, instead 

of the total spacetime limits.  The integrated momentum density contained within this renormalized 

volume is a fraction, 𝜂, of the total momentum (3).  Renormalization consists of converting the 

wavefunction into one for which the renormalized eigenvalue is the eigenvalue of the momentum 

operator, and which is normalized over the entire spacetime.  The components of such a 

wavefunction 𝛷 are 

 𝛷 = 𝛺−
1

2 𝑒𝑥𝑝 [
𝑖𝑥𝐼𝜂𝑝𝐼

ℏ
]. 

So Eq. (3) is recast as a renormalized momentum 𝜋𝜇′ 

 𝜋𝜇′ = 𝛿𝜇′
𝜇𝑝𝐼 ∫ 𝑑𝑉𝛹†𝑥𝐼 ,𝜇𝛹

𝐿2
𝐿1

= 𝜂𝑝𝐼 ∫ 𝑑𝑉𝛹†𝑥𝐼 ,𝜇𝛿𝜇′
𝜇𝛹

𝛺

0
 

 = ∫ 𝑑𝑉𝛷†𝑥𝐼 ,𝜇𝛿𝜇′
𝜇�̂�𝐼𝛷

𝛺

0
= 𝜂𝜇′

𝜇 𝑝𝜇, (7) 

where 𝜂𝜇′
𝜇 = 𝜂𝛿𝜇′

𝜇
. 

With reference to Eqs. (4) and (5), condition (7) requires a constraint on 𝐿2 as a function of the 𝑥𝜇 

such that 

 (𝑁𝐼{𝐿2[𝑓′(𝑥
𝜇)]}),𝜇 = 𝜂(𝑁𝐼{𝛺[𝑓(𝑥𝜇)]}),𝜇. (8) 
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Because 𝜂 is a scalar factor, the components of 𝑝𝜇 are all rescaled together.  The limit as 𝐿1 and 𝐿2 

approach each other, 𝑙𝑖𝑚
𝐿2→𝐿1

𝑝𝐼 ∫ 𝑑𝑉
𝐿2
𝐿1

𝛹†𝑥𝐼,𝜇𝛹, might be considered as a point particle limit.  

However, physical constraints may dictate how close this limit can be approached.  That is, 

constraints may demand a minimum allowed difference 𝐿2 − 𝐿1. 

The renormalized metric tensor is 𝑔𝜇′𝜈′ = 𝜂𝜇′
𝜇
𝜂𝜈′
𝜈 𝑔𝜇𝜈. To yield an invariant squared differential 

interval, the renormalized classical coordinate differential must be 𝑑𝑥𝜇′ = 𝜂−1𝛿𝜇
𝜇′𝑑𝑥𝜇.   

Renormalization allows for separating a mass 𝑚 from the quantum momentum as a scalar factor.  

With this separable mass, 𝑝𝐼 = 𝑚𝑐𝑣𝐼 at points in the region of renormalization, and the equations of 

motion are expressible using the quantum quantities 
𝑝𝜇

𝑚𝑐
, not just the classical velocities 𝑔𝜇𝜈

𝑑𝑥𝜈

𝑑𝑠
. 

The explicit way that renomalization allows separating mass is based on the constant values of the 

eigenvalues 𝑝𝐼.  If the scale factor is constant, then 𝜂𝑝𝐼 is a product of two constants. The constant 

𝑚𝑐 is introduced as a constant with momentum units.  This constant is incorporated into a new 

constant scale factor 𝛲 and a dimensionless velocity 𝑣𝐼, 

 𝜂𝑝𝐼 = 𝛲 (
𝑝𝐼

𝑚𝑐
) = (𝑚𝑐𝜂) (

𝑝𝐼

𝑚𝑐
) = 𝛲𝑣𝐼. 

In this way, 
𝛲

𝑐
= 𝑚𝜂 has units of mass, is constant, and is separated from a quantum velocity 𝑣𝐼 =

𝑝𝐼

𝑚𝑐
.  Because the quantum velocity does not depend on the scale factor 𝛲, its behavior can be 

analyzed without reference to the renormalization scale.  Accordingly, the scale factor 𝜂 and the 

reference to the corresponding transformation 𝜂𝜇′
𝜂

 is dropped and the mass 𝑚 retained.  At this point 

in the development of the theory, the behavior of the renormalized quantum velocities 𝑥𝐼 ,𝜇𝑣𝐼 is 

equivalent to the behavior of the coordinate velocities 
𝑑𝑥𝜇

𝑑𝑠
 within the general theory of relativity. 

IV. GAUGE FROM RENORMALIZATION 

Given Eq. (8), dropping the reference to the equations of constraint, define coordinate-like 

quantities 𝑀𝐼(𝛺, 𝐿2) as 

 𝑀𝐼(𝛺, 𝐿2) = 𝑁𝐼(𝛺) − 𝑁𝐼(𝐿2) = (1 − 𝜂)𝑁𝐼(𝛺). 

Taking the derivatives with the 𝑥𝜇, multiplying by 𝜂 and rearranging gives the transformation law 

𝑥𝐼 ,𝜇 = 𝜂−1(𝑥𝐼,𝜇 −𝑀𝐼
,𝜇).   The spacetime momentum is 

 𝑝𝜇 = 𝑝𝐼𝑥
𝐼
,𝜇 = 𝜂−1(𝑝𝜇 − 𝑟𝜇), 

where 𝑟𝜇 = 𝑝𝐼𝑀
𝐼
,𝜇.  Now Eq. (7) gives a renormalized momentum 𝜋𝜇′, 

 𝜋𝜇′ = 𝜂𝜇′
𝜇𝑝𝜇 = 𝛿𝜇′

𝜇(𝑝𝜇 − 𝑟𝜇) = 𝑝𝜇′ − 𝑟𝜇′, 
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in which the scale factor does not appear.  Because the transformation 𝜋𝜇′ = 𝛿𝜇′
𝜇𝜋𝜇 holds for the 

renormalized momenta, the reference to the 𝑥𝜇′ can be dropped using the renormalized momenta. 

The renormalized metric tensor is 

 𝑔𝜇′𝜈′ = 𝑔𝐼𝐽𝑥
𝐼
,𝜇𝑥

𝐽
,𝜈𝜂𝜇′

𝜇 𝜂𝜈′
𝜈 = 𝑔𝐼𝐽𝜂

−2(𝑥𝐼 ,𝜇 −𝑀𝐼
,𝜇)(𝑥

𝐽
,𝜈 −𝑀𝐽

,𝜈)𝜂𝜇′
𝜇 𝜂𝜈′

𝜈  

 = 𝑔𝐼𝐽(𝑥
𝐼
,𝜇 −𝑀𝐼

,𝜇)(𝑥
𝐽
,𝜈 −𝑀𝐽

,𝜈)𝛿𝜇′
𝜇𝛿𝜈′

𝜈 = 𝑔𝐼𝐽(𝑥
𝐼
,𝜇′ −𝑀𝐼

,𝜇′)(𝑥
𝐽
,𝜈′ −𝑀𝐽

,𝜈′). (9) 

The scale factor does not appear in the bottom line of Eq. (9).  Consequently, reference to the 𝑥𝜇′ can 

be dropped using the renormalized metric tensor.  The renormalization transformation law is 𝜂𝑥𝐼 ,𝜇 =

𝑥𝐼 ,𝜇 −𝑀𝐼
,𝜇, and the renormalized metric tensor is 𝐺𝜇𝜈 = 𝜂2𝑔𝜇𝜈.  The renormalized squared 

differential interval is formed with the 𝑑𝑥𝜇, giving 

 𝜂2𝑑𝑠2 = 𝑔𝜇′𝜈′𝛿𝜇
𝜇′𝛿𝜈

𝜈′𝑑𝑥𝜇𝑑𝑥𝜈 = 𝐺𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈 

 = 𝑔𝐼𝐽(𝑑𝑥
𝐼 − 𝑑𝑀𝐼)(𝑑𝑥𝐼 − 𝑑𝑀𝐼). 

After renormalization, the transformation laws between coordinates remain 𝑥𝐼 ,𝜇 such that 

 𝑔𝜇𝜈 = 𝑔𝐼𝐽𝑥,𝜇
𝐼 𝑥,𝜈

𝐽
 

and 

 𝑑𝑥𝜇 − 𝑑𝑀𝜇 = 𝑔𝜇𝛼𝑥𝐽,𝛼(𝑑𝑥
𝐽 − 𝑑𝑀𝐽), 

giving the renormalized squared differential interval as 

 𝜂2𝑑𝑠2 = 𝑔𝜇𝜈(𝑑𝑥
𝜇 − 𝑑𝑀𝜇)(𝑑𝑥𝜈 − 𝑑𝑀𝜈) = 𝐺𝜇𝜈𝑑𝑥

𝜇𝑑𝑥𝜈. (10) 

Because the 𝑑𝑀𝐼  and 𝑀,𝜇
𝐼 represent a scale factor, these quantities represent a gauge field.  The two 

forms for 𝑑𝑠2 in Eq. (10) are related by a gauge transformation of the first kind, wherein the 𝑀,𝜇
𝐼  are 

expressed in the renormalized metric tensor 𝐺𝜇𝜈 in one form, while they enter though the 

renormalized coordinate differentials in the other gauge form. 

The principle of least action is satisfied by either gauge form consistently through the variation of 

the differential interval, 

 𝛿 ∫ 𝑑𝑠
𝑙2
𝑙1

=
1

𝜂
∫ 𝑑𝑠

𝛿𝐺𝜇𝜈𝑑𝑥
𝜇𝑑𝑥𝜈

2𝑑𝑠2

𝑙2
𝑙1

= 0. (11) 

As the scale factor is not varied, the renormalized squared differential interval is varied with the 

variations 𝛿𝑥𝜇 of the coordinates.  The variations 𝛿𝑥𝜇 vanish at limits 𝑙1 and 𝑙2.  In the explicit 

gauge form in Eq. (11), the resulting equations of motion are 

 𝑔𝜇𝜆
𝑑𝑣𝜆

𝑑𝑠
= −

1

2
(𝐺𝜈𝜇,𝜆 + 𝐺𝜇𝜆,𝜈 − 𝐺𝜇𝜆,𝜈)𝑣

𝜆𝑣𝜈 = −𝛵𝜇𝜈𝜆𝑣
𝜆𝑣𝜈. (12) 
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Here 𝛵𝜇𝜈𝜆 has the form of a Christoffel symbol of the first kind written in terms of the renormalized 

metric tensor 𝐺𝜇𝜈.   In the other gauge form, the partial derivatives are taken with respect to the 𝑥𝜈 −

𝑀𝜈 = 𝜂𝑥𝜈, and the variations 𝛿(𝑥𝜈 −𝑀𝜈) are used along with the ordinary metric tensor 𝑔𝜇𝜈.  

Define the gauge velocity as 𝑉𝜇 =
𝑑(𝑥𝜈−𝑀𝜈)

𝑑𝑠
= 𝑣𝜈 −𝑤𝜈, where 𝑤𝜈 is the velocity associated with the 

coordinate-like 𝑀𝜈.  The variation is carried out using the following additional relationships: 

 
𝜕𝑔𝜇𝜆

𝜕(𝑥𝜈−𝑀𝜈)
= 𝜂−1𝑔𝜇𝜆,𝜈, 

 𝛿𝑔𝜇𝜈 = 𝑔𝜇𝜈,𝜆𝛿𝑥
𝜆 = [

𝜕𝑔𝜇𝜈

𝜕(𝑥𝜆−𝑀𝜆)
] 𝛿(𝑥𝜆 −𝑀𝜆) = 𝜂−1𝑔𝜇𝜈,𝜆𝛿(𝑥

𝜆 −𝑀𝜆), 

and 

 [
𝜕𝑔𝜇𝜈

𝜕(𝑥𝜆−𝑀𝜆)
] 𝑉𝜆 = 𝑔𝜇𝜈,𝜆𝑣

𝜆 = 𝜂−1𝑔𝜇𝜈,𝜆𝑉
𝜆. 

The result is 

 𝑔𝜇𝜆
𝑑𝑣𝜆

𝑑𝑠
= 𝑔𝜇𝜆

𝑑𝑤𝜆

𝑑𝑠
− 𝛩𝜇𝜈𝜆𝑉

𝜆𝑉𝜈, 

where 𝛩𝜈𝜇𝜆 is the gauge form of the Christoffel symbol of the first kind written with the 𝜂−1𝑔𝜇𝜆,𝜈. 

V. QUANTUM GAUGE FIELDS 

The preceding demonstrated the way in which the quantum mechanical property of momentum is 

converted into the classical property of velocity and incorporated into general relativity.  This 

introduced a scale factor that led to the quantities 𝑑𝑀𝐼  and 𝑀,𝜇
𝐼 that represent a gauge field.  

The Standard Model of particle physics is a quantum theory based on the use of generators of 

gauge transformations of the momentum. The connection between the scale factors introduced in the 

preceding and the quantum mechanical gauge generators is presented in the following. 

The renormalized wavefunction 𝛷 contains the scale factor 𝜂. This renormalized wavefunction is 

expressed as a product of the original wavefunction, 𝛹, and a gauge-generating function, 𝜙, such 

that 

 𝛷 = 𝛺−
1

2 𝑒𝑥𝑝 (
𝑖𝜂𝑥𝐼𝑝𝐼

ℏ
) = 𝛺−

1

2 𝑒𝑥𝑝 (
𝑖𝑥𝐼𝑝𝐼

ℏ
) 𝑒𝑥𝑝 [−𝑖(1 − 𝜂)

𝑥𝐼𝑝𝐼

ℏ
] = 𝛹𝜙. 

Here 𝛹 is given by Eq. (2) and the gauge-generating function is  

 𝜙 = 𝑒𝑥𝑝 [−𝑖(1 − 𝜂)
𝑥𝐼𝑝𝐼

ℏ
]. 

With a gauge generator 𝜃  given by 𝜃 = (1 − 𝜂)
𝑥𝐼𝑝𝐼

ℏ
, the gauge-generating function takes a 

convenient form, 𝜙 = 𝑒𝑥𝑝(−𝑖𝜃). This generates a momentum that is consistent with that of Eq. (7), 
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 ( ) ( )†

, , ,
0

1 1 ,I I I

I I IIdV x p x p x p p r       


=   = + − = − = −   . 

This preserves the interpretation of the scale factor-related quantities 𝑀,𝜇
𝐼  such that 𝑟𝜇 = 𝑝𝐼𝑀,𝜇

𝐼 =

ℏ𝜃,𝜇 is the momentum associated with the gauge field. 

The above introduction of the gauge generator leads to the gauge-generalized momentum operator, 

 ( ),
ˆˆ ˆ ,I

I Ix p  = − , 

that acts on the wavefunction 𝛹. Gauge generators and gauge-generalized momentum operators are 

tools upon which the Standard Model is built.  
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