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Abstract 

Adopting different matrix representations of the Clifford Cl3 algebra, a Dirac like equation 

provides a general relativistic wave equation that can describe particles of any spin. In analogy 

with the Dirac spinors, the wave functions split into two spinors, one accounting for a particle 

with a definite four momentum and one designating a helicity Eigen-state. Rewritten in spherical 

coordinates, generic solutions for any spin are presented. 
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The problem of generalizing the Dirac equation to account for free massive particle of any spin has a 

long history  [1-4]  (For a historic review of such attempts we address the reader to ref. [3-4] and 

references mentioned therein). The Dirac equation [1] in its standard form is,  

(𝑖𝛾𝜇𝜕𝜇 −𝑀)𝛷 = 0,                                                                       (1) 

Where 𝛾𝜇 are the Dirac 4 × 4  gamma matrices, satisfying, 

 (𝛾0)2 = 𝐼(4) ; (𝛾𝜇)2 = −1; 𝛾𝜇𝛾𝜈 = −𝛾𝜈𝛾𝜇  ;  𝜇, 𝜈 = 1,2,3.                                     (2) 

It is typical to the Clifford algebra Cl3 of Euclidean space that it can be generated by eight 

elements [5], 

A scalar : 1,                                                                                  (3a) 

Three vectors : 𝑒𝑖; 𝑖 = 1,2,3,                                                              (3b) 

Three bivectors : 𝑒𝑖𝑗 = 𝑒𝑖𝑒𝑗 = 𝑒𝑖 ∙ 𝑒𝑗 + 𝑒𝑖⋀𝑒𝑗,                                              (3c) 

One Trivector : 𝑒123 = (𝑒1𝑒2𝑒3)(𝑒1𝑒2𝑒3) = −1.                                          (3d) 
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The Pauli matrices are isomorphic to Cl3 providing its matrix representation. Namely 1↔ 𝐼(2), 

𝑒𝑖 ↔ 𝜎𝑖. Likewise, the Dirac matrices, spanned by 𝛾0, 𝛾1, 𝛾2, 𝛾3 as orthonormal unit vectors parallel 

to the coordinate axes of Minkowski space time, with  (𝛾0)
2 = 1, (𝛾𝑖)

2 = −1 ; 𝑖 = 1,2,3  form also 

generators of the Clifford algebra. Since the 2 × 2 Pauli spin matrices and the 4 × 4 Dirac matrices 

form representations of Cl3 all algebraic properties of Pauli spin matrices and the Dirac matrices 

follow from the underlying algebra. This observation must hold true for other representations and 

can be applied, as demonstrated below, to derive a Dirac like equation for particles of any spin.  As a 

representation of Cl3 algebra consider the following gamma matrices, 

𝛾𝑖
(2𝑛)

≡ 𝑑𝑖𝑎𝑔(𝜎𝑖 , ⋯, 𝜎𝑖) ; 𝑖 = 𝑥, 𝑦, 𝑧,                                                (4) 

where 𝜎𝑖; 𝑖 = 𝑥, 𝑦, 𝑧 are the Pauli matrices. Clearly, the above satisfy, 

(𝛾𝜇)† = 𝛾𝜇;  (𝛾𝜇)2 = 𝛾0  ; 𝛾0=𝐼(2𝑛) ; 𝜇 = 0,1,2,3,                                                   (5a)                 

  [𝛾𝑎 , 𝛾𝑏] = 𝑖𝜖𝑎𝑏𝑐𝛾𝑐  ; 𝑎, 𝑏, 𝑐 = 𝑥, 𝑦, 𝑧,                                                                          (5b) 

{𝛾𝑎 , 𝛾𝑏} = 2𝛾0𝛿𝑎𝑏; 𝑎, 𝑏 = 𝑥, 𝑦, 𝑧,                                                                            (5c) 

𝑡𝑟𝑎𝑐𝑒 𝛾𝑎 = 0  ; 𝑎, 𝑏, 𝑐 = 𝑥, 𝑦, 𝑧,                                                                             (5d) 

𝛾𝑎 𝛽 − 𝛽 𝛾𝑎 = 0, β2 = 𝐼(2𝑛),                                                                               (5e) 

where 𝐼(𝑛) is 𝑛 × 𝑛 unit matrix and 𝛽 = 𝑑𝑖𝑎𝑔(𝐼(𝑛), −𝐼(𝑛)).  The gamma matrices defined above, 

like the Pauli spin matrices and the Dirac matrices, are isomorphic to 𝐶𝑙3 and allow factorizing the 

momentum-energy relation as follows, 

(𝐸2 − 𝑝2 −𝑀2)𝐼(2𝑛) = 

[𝐸 𝐼(2𝑛) + (
𝑀𝐼(𝑛) 𝒑 ∙ 𝜸(𝑛)

𝒑 ∙ 𝜸(𝑛) −𝑀𝐼(𝑛)
)] [𝐸 𝐼(2𝑛) − (

𝑀𝐼(𝑛) 𝒑 ∙ 𝜸(𝑛)

𝒑 ∙ 𝜸(𝑛) −𝑀𝐼(𝑛)
)] = 0,           (6) 

and we may adopt the following as a Dirac like equation for any spin 𝑠,   

[𝐸 𝐼(2𝑛) − (
𝑀𝐼(𝑛) 𝒑 ∙ 𝜸(𝑛)

𝒑 ∙ 𝜸(𝑛) −𝑀𝐼(𝑛)
)]𝛷(2𝑛) = 0.                                             (7) 

Above, the wave function 𝛷(2𝑛)(𝑥, 𝑡) is 2𝑛 components spinor, 𝐸, 𝒑,𝑀  are respectively, the 

particle energy, linear momentum and rest mass. For reasoning to be given below, we identify the 

vector 𝜸 = (𝛾𝑥, 𝛾𝑦 , 𝛾𝑧) with the particle spin 𝑺. Taking, 𝑛 = 2𝑠 + 1 , 𝛽 ≡ 𝑑𝑖𝑎𝑔(𝐼(𝑛), −𝐼(𝑛)), the 

Minkowski metric 𝜂𝜇𝜈 = 𝑑𝑖𝑎𝑔(1,−1, −1,−1), 𝐸 ↔ 𝑖𝜕𝑡 and  𝒑 ↔ (−𝑖𝜕𝑥 , −𝑖𝜕𝑦 , −𝑖𝜕𝑧), Eq. (7) can 

be rewritten compactly as, 

(𝑖𝛾𝜇𝜂𝜇𝜈𝜕𝜈 − 𝛽𝑀)𝛷
(2𝑛) = 0.                                                          (8) 

Formally, apart from the gamma matrices being different the above has the form of Eq. (1) and is 

subjected to the Cl3 algebra. Here as well the wave function can be considered as 2𝑛 column vector or 

as two 𝑛–components spinor wave functions, 𝛷(2𝑛) = (
𝜙1
(𝑛)

𝜙2
(𝑛)
), where one of these accounts for a 

particle with four momentum (𝐸, 𝒑) while the other designates a helicity eigen-state. Taking 𝑛 = 2𝑠 +
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1 is just right to account for the allowed spin components 𝑚𝑠 = 𝑠, 𝑠 − 1, 𝑠 − 2,⋯ ,−𝑠 + 2, −𝑠 +

1, −𝑠. For 𝑠 = 1/2 fermion Eq. (8) with the gamma matrices of Eq. (4) yields exactly the same four 

Dirac Spinors. 

As mentioned above we identify the gamma matrices with the spin components. Indeed, the 

commutative relations Eq. (5b) of the gamma matrices are reminiscent of the spin operator 

commutation relations, 

[𝑆𝑥 , 𝑆𝑦] = 𝑖𝑆𝑧, [𝑆𝑧 , 𝑆𝑥] = 𝑖𝑆𝑦 , [𝑆𝑦 , 𝑆𝑧] = 𝑖𝑆𝑥 .                                       (9)  

Furthermore, neither the orbital angular momenta, 𝐿𝑖 ≡ −𝑖𝜖
𝑖𝑗𝑘𝑥𝑗𝜕𝑘, nor the spin components 𝑠𝑖 ≡

𝑖𝜖𝑖𝑗𝑘𝛾𝑗𝜕𝑘 commute with the free particle Hamiltonian of Eq. (8). It is straightforward to prove 

that, 

[𝐿𝑖, 𝐻0] = +𝜖
𝑖𝑗𝑘𝛾𝑗𝜕𝑘 ,                                                     (10) 

and, 

[𝑠𝑖, 𝐻0] = −𝜖
𝑖𝑗𝑘𝛾𝑗𝜕𝑘 .                                                     (11) 

Then, 𝑗𝑖 = 𝐿𝑖 + 𝛾𝑖 commutes with 𝐻0 and the total angular momentum taken to be J = 𝑳 + 𝑺 =  𝑳 +

𝜸 is conserved as expected for the total angular momentum. Naturally, since the free particle 

Hamiltonian Eq. (8) is  2𝑛 × 2𝑛 the wave function Φ(x, t) is a 2(2𝑠 + 1) components spinor. This is 

just right to allow for 2(2𝑠 + 1) orthonormal solutions, 2𝑠 + 1 positive energy and 2𝑠 + 1 negative 

energy solutions with helicity Eigen-values, ℎ = 𝑠, 𝑠 − 1,⋯ ,−𝑠 + 1,−𝑠. Particularly, for spin 𝑠 =

1/2  one obtains four components spinors corresponding to 2 positive energy solutions with spin up 

and spin down and 2 negative energy solutions with spin up and spin down. 

For practical purposes it is worth rewriting Eq. (8) in spherical coordinates. To this aim the 

Cartesian Minkowski metric is replaced with the Minkowski metric written in Spherical Coordinates,  

𝑖𝛾0𝜕𝑡𝛷
(2𝑛) = (−𝑖𝜸 ∙ 𝛁 + 𝛽𝑀)𝛷(2𝑛),                                              (12) 

where 𝜸 ≡ (𝛾𝑡, 𝛾𝑟, 𝛾𝜗, 𝛾𝜑) with 𝛾𝑡, 𝛾𝑟, 𝛾𝜗, 𝛾𝜑  being related to the 𝛾𝜇;  𝜇 = 0,1,2,3 via a similarity 

transformation, 

(

 

𝛾𝑡

𝛾𝑟

𝛾𝜗

𝛾𝜑)

 = (

𝐸0
0

0
0
0

0
𝐸1
1

0
0

0
0
𝐸2
2

0

0
0
0
𝐸3
3

)

(

 
 
𝛾0

𝛾1

𝛾2

𝛾3)

 
 

.                                           (13) 

Above, 𝐸0
0 = 1, 𝐸1

1 = 1, 𝐸2
2 = 1 𝑟,⁄ 𝐸3

3 = 1 𝑟 sin 𝜗⁄  stand for inverse vierbein fields [see for example 

6], and 𝛁 = 𝑟̂𝜕𝑟 + 𝜗̂𝜕𝜗 + 𝜑̂𝜕𝜑 . By definition the angular momentum operator is,  𝐿̂=𝑟̂ × 𝛁. Then, 

𝑟̂ × 𝐿̂=𝑖 [𝛁 − 𝑟̂𝜕𝑟], and 

𝑖𝜸 ∙ 𝛁 = 𝑖𝜸 ∙ 𝑟̂𝜕𝑟 + 𝜸 ∙ 𝑟̂ × 𝐿̂ .                                                       (14)  
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Using the identity: (𝜸 ∙ A)(𝜸 ∙ B) = (A ∙ B) +
𝑖

2
 𝜸 ∙ 𝐴 × 𝐵  where 𝐴 and 𝐵 are any three vectors 

(Note that since the gamma matrices are representation of Cl3 this identity follows from the underlying 

algebra) we may rewrite the free particle Hamiltonian as, 

𝐻0 = 𝑖𝛾
0𝜕𝑡 = −𝑖𝜸 ∙ 𝑟̂ [𝜕𝑟 +

𝑠

𝑟
−
1

𝑟
(2𝜸 ∙ 𝐿 + 𝑠)]  + 𝛽𝑀 .                          (15) 

As mentioned above, we identify 𝜸 with the spin 𝑺. This allows defining an angular operator 𝐾 ≡

(2𝜸 ∙ 𝐿 + 𝑠) = (2𝑺 ∙ 𝐿 + 𝑠), 

𝐾 = 2𝑺 ∙ 𝐿 + 𝑠 = 𝐽2 − 𝐿2 − 𝑆2 + 𝑠.                                        (16) 

Substituting this in Eq. (15) gives, 

𝐻0 = 𝑖𝛾
𝑟 [𝜕𝑟 +

𝑠

𝑟
−
1

𝑟
𝐾] + 𝛽𝑀.                                              (17) 

It is rather straightforward to show that the total angular momentum 𝐽2, the third component of the 

total angular momentum 𝐽3, the angular operator 𝐾 and parity P commute with the Hamiltonian 𝐻0, Eq. 

(17). Then, we may separate the wave function 𝛷(2𝑛)  into angular and radial wave functions. The 

angular part of the wave function is a spinor of spherical harmonics. These are Eigen-states of 𝐽2 and 

𝐽3 and parity. The Eigen functions of 𝐿2 and 𝐿3 are the usual spherical harmonics 𝑌𝑙
𝑚𝑙(𝛺). The Eigen 

functions of 𝑆2 and 𝑚3 are  2𝑠 + 1 components spinors. For a spin s particle 𝑚𝑠 = −𝑠,−𝑠 + 1,⋯ , 𝑠 −

1, 𝑠. The angular part of the wave functions for free particles are readily written as spherical harmonic 

spinors, 

𝑦𝑙𝑚𝑗
𝑗 (𝛺) = ∑ 𝐶(𝑙, 𝑠, 𝑗;𝑚𝑗 −𝑚𝑠, 𝑚𝑠, 𝑚𝑗)𝑌𝑙

𝑚𝑙𝑚𝑠=+𝑠
𝑚𝑠=−𝑠

(𝜗, 𝜑)𝜒𝑠
𝑚𝑠.                          (18) 

Above, 𝐶(𝑙, 𝑠, 𝑗;𝑚𝑗 −𝑚𝑠, 𝑚𝑠, 𝑚𝑗) is a Clebsch Gordon coefficient combining orbital angular 

momentum 𝑙 with spin 𝑠 to a total angular momentum 𝑗 with magnetic quantum numbers  𝑚𝑗 −

𝑚𝑠, 𝑚𝑠, 𝑚𝑗, respectively. The spherical harmonic spinors are orthonormal,  

∫𝑑𝛺 (𝑦𝑙𝑚𝑗
𝑗 (𝛺))

𝐻

𝑦
𝑙′𝑚𝑗

′
𝑗′ (𝛺) = 𝛿𝑗𝑗′𝛿𝑙𝑙′𝛿𝑚𝑚𝑗′.                                              (19) 

Furthermore, the wave function 𝛷𝑚𝑗k𝑗
𝑗

 is an Eigen-function of 𝐽2 , 𝐽3, 𝐾 and parity, thus 

𝐽2𝛷𝑚𝑗k𝑗
𝑗 = 𝑗(𝑗 + 1)𝛷𝑚𝑗k𝑗

𝑗
,                                              (20) 

𝐽3𝛷𝑚𝑗k𝑗
𝑗 = 𝑚𝑗𝛷𝑚𝑗k𝑗

𝑗
,                                                     (21)  

𝐾𝛷𝑚𝑗k𝑗
𝑗 = κ𝑗𝛷𝑚𝑗k𝑗

𝑗
.                                                     (22) 

The eigenvalues κ𝑗 of the angular operator 𝐾 for 𝑗 = 𝑙 ± 𝑠 are determined by evaluating the 

eigenvalues of 𝐾2 = (𝐽2 − 𝐿2 − 𝑆2 + 𝑠)2 , one finds, 

(κ𝑗)
2
= 𝑠2(2𝑙 + 1)2.                                                     (23) 

κ𝑗 = ±𝑠(2𝑙 + 1).                                                        (24) 
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Thus, assuming 𝛷𝑚𝑗k𝑗
𝑗 ~exp(−𝑖𝜔𝑡), for both 𝑗 = 𝑙 + 𝑠 and 𝑗 = 𝑙 − 𝑠 there exist two solutions 

𝑅1(𝑟)𝜙
+(𝛺) exp(−𝑖𝜔𝑡) and 𝑅2(𝑟)𝜙

−(𝛺) exp(−𝑖𝜔𝑡) corresponding to positive and negative κ𝑗 

respectively.  

Consider now the radial wave functions 𝑅1(𝑟) and 𝑅2(𝑟). With the free particle Hamiltonian Eq. 

(17) these are solutions of the equations,  

𝐻0𝛷𝑚𝑗k𝑗
𝑗 = 𝑖𝛾0𝜕𝑡 (

𝑅1(𝑟)𝜙
+(𝛺)

𝑅2(𝑟)𝜙
−(𝛺)

) = (−𝑖𝛾𝑟 [𝜕𝑟 +
𝑠

𝑟
−
1

𝑟
𝐾] + 𝛽𝑀) (

𝑅1(𝑟)𝜙
+(𝛺)

𝑅2(𝑟)𝜙
−(𝛺)

).        (25)                           

Substituting 𝛾𝑟 = 𝑑𝑖𝑎𝑔(𝜎1, ⋯ , 𝜎1), Eq. (25) becomes equivalent to 𝑛/2 identical non-autonomous 

pairs of equations, 

(
(𝜔 −𝑀)𝑅1(𝑟)𝜙

+(𝛺)

(𝜔 +𝑀)𝑅2(𝑟)𝜙
−(𝛺)

) = −𝑖𝜎1 (
[
𝑑

𝑑𝑟
+
𝑠−κ𝑗

𝑟
𝑅1(𝑟)𝜙

+(𝛺)]

[
𝑑

𝑑𝑟
+
𝑠+κ𝑗

𝑟
𝑅2(𝑟)𝜙

−(𝛺)]
).                              (26) 

These we may rewrite as pairs of autonomous radial equations: 

[
𝑑2

𝑑𝑟2
+
2𝑠

𝑟

𝑑

𝑑𝑟
+
(κ𝑗−1)κ𝑗+(𝑠−1)𝑠

𝑟2
+ (𝜔2 −𝑀2)]𝑅1(𝑟) = 0,                                  (27) 

[
𝑑2

𝑑𝑟2
+
2𝑠

𝑟

𝑑

𝑑𝑟
−
κ𝑗(κ𝑗+1)−(𝑠−1)𝑠

𝑟2
+ (𝜔2 −𝑀2)]𝑅2(𝑟) = 0.                                  (28) 

Furthermore, the equations above can be rearranged as a transformed Bowman version of the Bessel 

differential equation [7], namely, 

[𝑟2
𝑑2

𝑑𝑟2
+ (2𝑝 + 1)𝑟

𝑑

𝑑𝑟
+ (𝛼2𝑟2 + 𝛽1

2)] 𝑅1 = 0,                                        (32) 

[𝑟2
𝑑2

𝑑𝑟2
+ (2𝑝 + 1)𝑟

𝑑

𝑑𝑟
+ (𝛼2𝑟2 + 𝛽2

2)] 𝑅2 = 0,                                        (33) 

where 2𝑝 + 1 = 2𝑠 , 𝛽1
2 = (k𝑗 − 1)k𝑗 + (𝑠 − 1)𝑠, 𝛽2

2 = k𝑗(k𝑗 + 1) − (𝑠 − 1)𝑠 and 𝛼2 =

(𝜔2 −𝑀2). In terms of the first and second Bessel functions, the radial wave functions for free 

particle of any spin are given by, 

𝑅𝑖(𝑟) = 𝑟
−𝑝[𝐶1 𝐽𝑞𝑖(𝛼𝑟) + 𝐶2 𝑌𝑞𝑖(𝛼𝑟)] ; 𝑖 = 1,2,                                          (34) 

where   𝑞𝑖 = √𝑝2 − 𝛽𝑖
2
 ,  and 𝐶𝑖 are constants. The quantities 𝑝 and 𝛽𝑖 both depend on the spin,  so 

that the above represent implicit generic solutions for any spin. We may conclude that, in a stationary 

flat Minkowski space-time, the wave function of a free particle of any spin has the form, 

𝛷𝑚𝑗k𝑗
𝑗 (𝑡, 𝑟, 𝛺) = 

𝑒(−𝑖𝜔𝑡) [𝐴𝑗,𝑚𝑗, 𝜅𝑗(𝑝)𝑅1, 𝑘𝑗(𝑟)𝜙
+(𝛺) + 𝐵𝑗,𝑚𝑗, 𝜅𝑗(𝑝)𝑅2, 𝑘𝑗(𝑟)𝜙

−(𝛺)] × 𝑦𝑙𝑚𝑗
𝑗 (𝛺),            (35)  

where, 𝐴𝑗,𝑚𝑗,𝜅 and 𝐵𝑗,𝑚𝑗,𝜅 are complex coefficients depending on the particle momentum. 

To conclude, we quote without proves the following: (1) Equation (8) is fully consistent with 

Quantum Mechanics, and can be derived from a Lagrangian density and by using the Noether’s 

Theorem the conserved current satisfies the continuity equation. (2) Second quantization can be 
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accomplished using 𝑛 particle and 𝑛 anti-particle positive energy states. All be it Eq. (8) furnishes 

free particle relativistic dynamics. (3) In the limit of 𝑀 → 0 the equation reduces to that 

corresponding to massless particles which was studied thoroughly in a global space-time [ 8].  (4) As 

a private case, it is to be noted, that for massive 𝑠 = 1 bosons Eq. (8) is equivalent to the Proca 

equations [9] and in the limit of vanishing mass to the Maxwell’s equations. Proves of these will be 

reported in future report. 
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