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Abstract 

In this article, we use the so-called ))(exp( −  -expansion method to obtain some specific 

classes of one-parameter exact solutions of null-geodesics in the Ellis- Bronnikov wormhole 

metric. In the first stage of this method, the nonlinear PDE is converted into a nonlinear ordinary 

derivative equation (ODE) of polynomial form. Therefore, if we initially have a nonlinear ODE 

of polynomial form, sometimes its solutions can be obtained using the procedure of the 

))(exp( − -expansion method. In our paper, this method allows us to obtain some exact 

analytical solutions to null-geodesic equations in the Ellis-Bronnikov wormhole metric, 

expressed in the elementary functions. 

 

Keywords: Ellis-Bronnikov wormhole, Null-Geodesic Equation, Exact Solution,  

))(exp( − -Expansion Method. 

1. Introduction  

The theoretical studies of space-time structures with non-trivial topology have led to the discovery 

of some hypothetical objects, the so-called wormholes [1, 2] . The earliest traversable wormhole was 

proposed independently by Ellis and Bronnikov [3, 4] and is now known as the Ellis-Bronnikov 

wormhole, which is the simplest Morris-Thorne wormhole [5, 6]. Later, for the Ellis-Bronnikov 

wormhole metric, as the simplest traversable wormhole metric, different generalizations have been 

obtained generated by several kinds of exotic matter (see, e.g., [7]-[9] ). Moreover, many papers 

have been devoted to many studies of null and time-like geodesics in the gravitational fields of 

various wormholes. 
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    Since the equations of motion in different wormhole geometries are mostly of elliptical types, 

their solutions can be expressed through the Weierstraß  functions [10]-[14] . Note that quite often 

null and timelike geodesic equations are preferred to be solved numerically, representing the 

corresponding trajectories and geodesic potentials graphically (see, for example, [15] and references 

there). 

    To find the solitary wave and soliton solutions of non-linear evolution equations or non-linear 

partial differential equations, many expansion methods have been proposed, which have received 

considerable attention in recent decades. Such methods include, for example, the homogeneous 

balance method [16, 17] , the tanh-function method [18] , the sine-cosine method [19] , the  

))(exp( −  -expansion method [20] , the F-expansion method [21] , the Jacobi elliptic function 

method [22]-[24] , the  )/( GG  -expansion method [25]-[27], and the wide variety of their 

modifications. 

    These methods have been developed in order to construct exact analytical solutions of the 

different nonlinear evolution equations and nonlinear partial derivative equations (PDE). The 

interesting feature of those methods is that at the first stage of solving PDE, the independent space 

and time variables are combined into one traveling wave variable. As a result, the initial PDE is 

transformed into corresponding nonlinear ordinary derivative equation (ODE). If this is an ODE of 

polynomial type, then we could try to construct exact analytical solutions using the above mentioned 

methods. 

    So in our recent papers [28, 29], we used the  )/( GG  -expansion method to find exact 

analytical solutions for geodesics in some spherically symmetric space-times of general relativity. In 

this paper, we use the  ))(exp( −  -expansion method to obtain two classes of exact analytical 

solutions of null geodesic equations in the Ellis-Bronnikov wormhole metric. Once again, this study 

will allow us to be convinced of the efficiency of the methods under consideration when applied to 

some problems of General Relativity. 

2. Exponential The  ))(exp( −  - expansion method 

In this section, we present the brief descriptions of  ))(exp( −   -expansion method. For this aim, 

we have to consider the nonlinear evolution equations (NLEE) as follows:  
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tx

u
tt

u
xx

u
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u
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uuF                                                                                           (1) 

 where  F   is a function of  ,...,,,;,,
tx

u
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u
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u
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uu   and the subscripts denote the partial derivatives 

),( txu of    with respect to  x   and  t  . 
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    Suppose  Vtxutxu −==  ),(),(  , where the constant V is the velocity of the traveling wave, 

then the Eq. (1) reduces to a nonlinear ordinary differential equation (ODE) of the polynomial form 

for  )(),( utxu =  :  

 

,0,...),,,( = uuuuQ                                                                                                            (2) 

 

where  Q   is a function of  ,...,,,, uuuu    and its derivatives point out the ordinary derivatives with 

respect to    . 

    In  ))(exp( −  -expansion method for solving the nonlinear ordinary differential equation (2), 

one consider the traveling wave solution in the form:  

 

)),(exp(

0

)(  −
=

= k
k

C
N

k

u                                                                                              (3) 

 where  0
N

C  , and the coefficients  
k

C   for  Nk 0   are constants to be evaluated and  

)(uu =   satisfies the first order nonlinear ordinary differential equation:  

 

,))(exp())(exp()(  ++−=                                                                               (4) 

 

where   and     are arbitrary constants. The value of the positive integer  N   can be determined by 

balancing the highest order derivatives with the nonlinear terms of the highest order appearing in Eq. 

(2). 

    By substituting (3) into (2) and using (4) when required, we obtain a system of algebraic equations 

for ),0( Nk
k

C      and    . With the help of symbolic computation, such as, Maple, we can 

solve this system of algebraic equations. It is notable that Eq. (4) has the following five types of 

general solutions [Abdelrahman]:  
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 when  0,042 −= D  ,  
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 when  0,042 −= D  ,  
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 when  0,0,042 =−= D  ,  
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 when  0,0,042 =−= D  , and  

 

),
0

ln()(  +=                                                                                                                (9) 

  

when  0,0 ==   . Here,  
0
   is a constant of integration. Thus, the exact explicit solutions to the 

nonlinear ODE (2) can be obtained by means of the Eqs. (3) and (5)-(9). 

 

3. Null-geodesic equation in the Ellis-Bronnikov wormhole  

Here, we briefly recall the main equation of isotropic geodesic motion in the Ellis-Bronnikov 

wormhole spacetime, following Ref. [30] . The line element of this spacetime is described in terms 

of the proper radial distance  r  , covering the entire spacetime, by  

),22sin2)(22(222  ddardrdtds ++++−=                                                             (10) 

 

 where the coordinates are defined in the following ranges:  − t  ,  − r  ,   0  , 

and   20   . A positive parameter  a   defines the size of the throat of the wormhole. There are 

two Killing vectors in the static and spherically symmetric spacetime (10): the time translational  

ttt =


   and axial  





 =  . It could be noted that the wormhole throat is located at  0=r  . 

    Due to the spherical symmetry of (10), we can put  2/ =   without loss of generality. The 

condition that the trajectory is the null geodesic can be expressed as  
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,0=



kk                                                                                                                          (11) 

 where  


k   is the wave vector of photon. Substituting the two constants of motion, the energy  




ktgE −   and the angular momentum  



kgL    of the photon, into equation (10), we 

obtain the following integral of the null geodesics motion [30] :  

,
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where  ELb /   is the impact parameter. Obviously,  0L   and thus  0b  . As known, the photon 

scatterers when the impact parameter  ab   , but it falls into the throat at  ab   . 

    One could note that the trajectories of test particles as well as the photons are usually described by 

the geodesics lines, i.e.  )(rr =  . At the same time, it is established that the coordinate  

)(/1)(  ru    is more convenient than  )(r   for solving the geodesic equations in this and similar 

cases. Therefore, the equation (12) should be rewritten as follows   

.422
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This equation can be integrated directly, but the result is expressed in elliptic functions, which is 

quite difficult for further analysis. 

    Finally, differentiating equation (13) with respect to    , on can obtain the geodesic equation as 

the second-order ODE of the following form  
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where  
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 Now our goal is to construct an exact solution of equation (14) with the help of  ))(exp( −  -

expansion method. 

 

4. Solution of the null-geodesic equation using  ))(exp( −  -expansion 

method 

  First of all, we have to assume that the solution of ODE (14) can be presented as a polynomial in  

))(exp( −k  , i.e.  
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...,))(exp()( +−=  N
N

Cu                                                                                            (16) 

where  )(   must satisfy the auxiliary linear ODE (4) with     . By using (16) and (4), where a 

prime stands for the derivative with respect to    , it can be derived that  
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    Using the homogeneous balance between  u    and  3u   in equation (5), followed from (16) and 

(17), one can get  NN 32 =+  , that is  1=N  . Therefore, it is possible to represent (16) as follows  
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 and, thus,  
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    Following the procedure of the method and substituting (18) and (19) into equation (14), we 

collect all terms with the same power of  ))(exp( −k   together in the left -hand side of equation 

(14). As a result, this equation is converted into another polynomial in  ))(exp( −  , which 

coefficients should be equal to zero, that yields the following set of  algebraic equations for  

,
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As  0
1
C  , it follows from equation (20) that  2

1
/2 CB =   and, therefore,  0B   or  ab   , 

according to (15). The latter means that the following consideration is limited only to the case of a 

photon falling into the throat of wormhole. In addition, from the same equation (15), it follows that  

0A  . Solving the set of equations (20)-(23), we can obtain the following set of parameters in exact 

solution (18):  CC =
0

  is an arbitrary real parameter, and  
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Substituting  
0

C   and  
1

C   from the latter into (18), we get  
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where  )(   can be represented as  
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according to  02 −= AD   and equation (6). Substituting this expression into Eq. (25), one can 

obtain the following exact solution to Eq.(14)  
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which can be converted by a simple algebraic manipulation and some redefinition of  0   into the 

following expression  
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with an arbitrary constant  
0

  . Taking into account Eq. (15), the trajectories  )(rr =  , defined by 

this solution, are as follows  
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Thus, a one-parameter set of photon trajectories  )
0

,( rr =   through the throat of Ellis-Bronnikov 

wormhole is described by equation (29) and can be illustrated by graphs in Figure 1. 

 

 

 

Fig. 1: Light beam trajectories  )
0

,( rr =   described by equation (29) with  
3/2,1 == ba

   

in  13.0
0
=   (black ),  0

0
=   (red),  13.0

0
−=   (blue). 

 

5. Solving the null geodesics for the spherical radius 

    As well known, the stationary line element for the general spherically symmetric spacetime can 

be represented by [1]  

),22sin2(2

)(

2
2)(2 




 dd

h

d
dtfds +++−=                                                            (30) 

where     stands for the curvature coordinate or the spherical radius.  

    Because of spherical symmetry, one can adopt  2/ =   without loss of generality, so that the 

second-order null-geodesic equation get the following form [30, 31]  
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where  )(/1)(  u  . 
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    In this section, we consider the metric of Ellis-Bronnikov wormhole spacetime (1) in terms of 

spherical radius  22 ar +=  , so that the line element becomes  

 

).22sin2(2
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    From equations (30) and (32), we get  1)( =uf   and  221)( uauh −=  . Substituting these 

functions along with  bEL =/   into Eq.(31), we obtain the following equation for the light trajectory 

on the equatorial plane of the standard metric (32):  
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We can see that equation (33) can be represented in the form similar to (14) as  
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where  
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in the present case. 

    Comparing equations (14) and (34), we find a difference only in the sign of A . Therefore, we 

can repeat equations (18)-(23), changing the sign of  A   in them to the opposite one. As a result, an 

analogue of equation (8) now can be written in the following form:  
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−
==                                                                            (36) 

where  CC =
0

  is an arbitrary real parameter. 

    As according to the latter  0242 =−= AD   , we get from Eq. (6) that  



Shchigolev                                   Journal for Foundations and Applications of Physics, vol. 11, No. 1 (2024) 

65 
 

.
2

2)
0

(
2

tanh2

ln)(



















−

++

=









BCA

BCAA 

                                                                  (37) 

 Substituting (37) into Eq. (18), one can obtain the following exact solution to Eq.(34):  
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We can introduce a new arbitrary constant  C   equal to a certain combination of constants, such as  

)
0

2exp( A
BCA
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−

+  . After that, the solution (38) can be represented as follows:  
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     A one-parameter set of the light ray trajectories  )( =   in terms of spherical radial coordinate 

near the Ellis-Bronnikov wormhole is described by equation (39) and can be illustrated by graphs in 

Figure 2. 

 

 

Fig. 2: Example of an image Light beam trajectories  )( =   described by equation (39) with  

3,2,1 −=== CBA   (black), and  10,8,5 === CBA   (red). 
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6. Conclusions 

    In this work, we used the  ))(exp( −  -expansion method to obtain two classes of the one-

parameter exact analytical solutions of null geodesic equations in the Ellis-Bronnikov wormhole 

metric. Both of these solutions are graphically illustrated in Figure 1 and Figure 2 for a certain choice 

of numerical parameters in these solutions. Moreover, the resulting solutions, equations (90) and 

(39), coincide with similar solutions that we obtained in previous work [28] using a different method, 

namely the (G'/G)  -expansion method. 

    We can conclude that application of these methods or some similar methods, mentioned in 

Introduction, in the manner described in this paper can make it possible to obtain some classes of 

exact solutions for nonlinear ODE expressed in terms of elementary functions, which greatly 

simplifies the analysis of the solutions in subsequent studies. 
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