Information Transfer in Quantum Mechanics

Tibor Blazsó


This paper deals with the most elementary information transmission in Quantum Mechanics. A simple quantum mechanical system under Coulomb-type potential is investigated. Like the classical case, a deep relation between the potential energy and the rate of information transfer is established for quantum-mechanical situation. The corresponding equation is presented. The article shows the circumstance for the free particle, too.


Information transmission, Quantum Mechanics

Full Text:



T. Blazsó, “Elementary Information in Physics”, Physics Essays, 25, 83-90 (2012)

M. Burgin, Foundations of Information Theory, e-print arXiv:/0808.0768v1 or (2008)

P. Rocchi, “Notes on the Essential System to Acquire Information”, Advances in Mathematical Physics, Vol. 2010, (2010) Article ID 480421

G. Sommaruga (Ed.): Formal Theories of Information, (Springer-Verlag Berlin Heidelberg 2009), p. 13

L. Floridi, Semantic Conceptions of Information, (The Stanford Encyclopedia of Philosophy, Spring 2011 Edition) January 28, 2011

P. Adriaans, “A Critical Analysis of Floridi’s Theory of Semantic Information”, Know. Techn., 23, 41 (2010)

F. I. Dretske, Knowledge and the Flow of Information, (MIT Press, Cambridge, Mass., 1981)

L. Brillouin, Scientific Uncertainty and Information (Academic Press, 1964)

O. J. E. Maroney, Information and Entropy in Quantum Theory, Ph.D. Thesis Birkbeck College, University of London e-print arXiv:quant-ph/0411172v1 (23 Nov 2004) Or November 23, 2004

T. Duncan., J. Semura, The Deep Physics Behind the Second Law: Information and Energy As Independent Forms of Bookkeeping, (2005)

F. Hermann and G. B. Schmid, “An analogy between information and energy”, Eur. J. Phys., 7, 174 (1986)

S. A. Umpleby, “Physical Relationships among Matter, Energy and Information”, Syst. Res. Beh. Sci., 24, 3, p. 369, (2007)

H. J. Bremermann, Optimization through evolution and recombination in: Self-Organizing systems, (Spartan Books, Washington, D.C. 1962) pp. 93–106.

H. J. Bremermann, Minimum Energy Requirements of Information Transfer and Computing Transf. Comp.”, Int. Jour. Theor. Phys., 21, 3/4, (1982)

S. Toyabe, “Experimental demonstration of information-to-energy conversion”, Nat. Phys., 6, 988 (2010)

L. Boltzmann, Weitere Studien über Wärmegleichgewicht unter Gasmolekulen (Further Studies on Thermal Equilibrium under Gas Molecules), Wien. Ber., 53, 195 (1866)

J. W. Gibbs, Elementary Principles in Statistical Mechanics. Rational Foundation of Thermodynamics. (Dover Publications, Inc. New York, 1961)

R. V .L. Hartley, Transmission of Information, Bell Syst. Techn. J., 7, 3, p.535, (1928)

C. E. Shannon, A Mathematical Theory of Information, Bell Syst. Techn. J., 27, p. 379 and 623, (1948)

G. N. Lewis, “Generalized thermodynamics including the theory of information”, Science, 71, 569 (1930)

L. Brillouin, Science and Information Theory (Academic Press New York. 1956)

F. Tillmann and B. R. Russell, Information and entropy, Synthese, 13, 3, 233 (1961)

M. Xiaochun, Definition of Nonequilibrium Entropy of General Systems, e-print March 25, 1999

G. Sh. Boltachev and J. W. Schmelzer, “On the definition of temperature and its fluctuations in small

systems”, Chem. Phys., 7, 133 (2010)

A. Vulpiani, “Temperature in small systems: a well-defined quantity”, Complex Systems and Biological

Physics Seminar, Albanova University Center Stockholm Sweden May 25 (2010)

L. Brillouin, Scientific Uncertainty and Information, (Academic Press 1964) p. 14.

P. Garbaczewski, “Differential Entropy and Dynamics of Uncertainty”, J. Stat. Phys., 123, 2, (2006)

Č. Brukner and A. Zeilinger, Conceptual Inadequacy of the Shannon

information in Quantum Measurements, arXiv: quant-ph/0006087v3

A. Faigón, Uncertainty and information in classical mechanics formulation, (2003)

or ph/papers/0311/0311153.pdf November 22, 2003

J. P. Badiali, “The concept of entropy. Relation between action and entropy”, Cond. Mat. Phys, 8, 4, 655 (2005)

J. L. Haller Jr.: Information Mechanics. arXiv:physics/0106081

Or April 20, 2008

K. W. Ford and J. A. Wheeler, Geons, Black Holes, and Quantum Foam: Life in a Physics, (W. W. Norton & Company 1998) p. 63

B. R. Frieden, Science from Fisher Information (Cambridge University Press. 2nd Ed., 1998)

D.A. Lavis, R.F. Streater, Physics from Fisher Information, Stud. Hist. Phil. Mod. Phys., 33, 327, (2002)

C.W. Rietdijk: Four-dimensional Reality and its Coherence. October 8, 1980

R. R. Sharma, Unified Physical Theory, ( Cosmo Publications India 1990)

B. Catania, The Physics of the Boolean Observer, Lecture given on at the International Symposium on “Communication, Meaning and Knowledge vs. information Technology,” Lisbon September, 13-15 Lisbon (1989)

R. C. Harney, A Method for Obtaining Force Law Information, Am. J. Phys. 41, 67 (1973)

C .W. Rietdijk, “How Do "Virtual" Photons and Mesons Transmit Forces Between Charged Particles and

Nucleons ?”, Foundations of Physics, 7, Nos. 5/6, (1977)

P. Ehrenfest, Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik”(Comment on the Approximate Validity of the Classical Mechanics within the Frame of Quantum Mechanics), Zeitschrift für Physik, 45, p. 455, (1927)

U. Klein, “What is the limit h → 0 of quantum theory”, arXiv:1201.0150v1[quantph] 30 Dec 2011

E. Madelung, “Quantentheorie in hydrodynamischer Form”, Zeitschrift für Physik, 40, 322–326, (1926)


  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

ISSN: 2394-3688

© Science Front Publishers