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Abstract: Although methyl ammonium lead iodide, (CH3NH3PbI3) has proven to be an 

effective photovoltaic material, there remains a main concern about the toxicity of lead, 

therefore determination of a lead free halide perovskite is of outstanding interest.  Sn2+ metal 

cations are the most obvious substitute for Pb2+ in the perovskite structure because of the 

similar s2 valence electronic configuration to Pb2+. Sn2+ can form a perovskite with a basic 

formula ASnX3 (A= CH3NH3 and X = halide) because the ionic radius of Sn
2+

 is similar to 

that of Pb
2+

. With the above similarity, methyl ammonium tin iodide CH3NH3SnI3 is one of 

the common replacement for CH3NH3PbI3 in the fabrication of organic-inorganic perovskite 

solar cells. FHI-aims code was used to perform the simulation of CH3NH3SnI3 in this work. 

Geometry building, parameter optimization, determination of the best exchange functional, k-

grid convergence test along with determination of equilibrium lattice constant and geometry 

relaxation for CH3NH3SnI3 were carried out. An energy direct band gap of 1.051 eV was 

obtained, with an underestimation of 0.249 eV which amount to 19.2% when compared with 

experimental value. The lattice constant obtained using phonopy with ZPE is close to 

experimental reported values with an underestimation of 3.01%. The temperature dependent 

of lattice constant was studied in the temperature range of 0 to 318 K. At the same 

temperature range, shift in energy bandgap and dielectric constant due to lattice expansion 

was also investigated.  

Keywords: Methyl ammonium tin iodide (CH3NH3SnI3), DFT, FHI-aims, Bandgap, 

Dielectric constant, linear-thermal-expansion 

1. Introduction 

The solid-state dye sensitized solar cells possess a monolithic structure in contrast to the sandwich 

design of the liquid electrolyte based DSSC. Processes such as photo excitation of sensitizer, 

electron injection and dye regeneration are the same as in the liquid electrolyte-based DSC, the only 

different part is that the transfer holes takes place directly from the dye to the hole transporting 



Abdulsalam et al                         Journal for Foundations and Applications of Physics, vol. 5, No. 2 (2018) 

203 
 

material (HTM), and then the hole is transported via hopping to the counter electrode. Typically, the 

light-harvesting active layer is a hybrid organic-inorganic lead or tin halide-base material, the 

popular among is being methyl ammonium lead iodide, CH3NH3PbI3 [1]. Perovskite materials such 

as the methyl ammonium lead halides are cheap to produce and simple to manufacture. Solar cell 

efficiencies of devices using these materials have increased from 3.8% in 2009[2] to a certified 

20.1% in 2014, making this the fastest-advancing solar technology[1].  According to detailed 

balance analysis, the efficiency limit of perovskite solar cells is about 31%, which approaches the 

Shockley-Queisser of gallium arsenide which is 33% [3].Their high efficiencies and low production 

costs make perovskite solar cells a commercially attractive option.  At about 330 K CH3NH3PbI3 

exist in cubic crystal system, as the temperature decreases to about 236 K, the cubic phase is 

transformed into the tetragonal phase. As the temperature decreases lower to about 177 K, the 

tetragonal phase is transformed into orthorhombic crystal systems[4]. From above it is evident that 

temperature affect the crystal structures of CH3NH3PbI3, and in turn the crystal structures of the 

perovskite-type compounds, strongly affect the electronic structures such as energy band gaps.  

Although methyl ammonium lead iodide, (CH3NH3PbI3) has proven to be an effective photovoltaic 

material, there remains a main concern about the toxicity of lead.  Lead-based perovskites are a 

major issue that may prejudice implementation of any PSC technology, both regulation and 

common sense suggest that PSCs have to become lead free to deliver a sustainable technology[5]. 

The determination of a lead free halide perovskite is of outstanding interest.  Sn
2+

 metal cations are 

the most obvious substitute for Pb
2+

 in the perovskite structure because of the similar s
2
 valence 

electronic configuration to Pb
2+

. Sn
2+

 can form a perovskite with a basic formula ASnX3 (A= 

CH3NH3 and X = halide) because the ionic radius of Sn
2+

 is similar to that of Pb
2+

[6]. With the 

above similarity, methyl ammonium tin iodide CH3NH3SnI3 is one of the common replacement for 

CH3NH3PbI3 in the fabrication of organic-inorganic perovskite solar cells.  In this work, effect of 

temperature on bandgap and dielectric constant of CH3NH3SnI3 was studied using FHI-aims code.  

 

2. Theoretical Background 

   2.1 Density Functional Theory 

Density Functional Theory (DFT) is a quantum mechanical technique used in Physics and 

chemistry to investigate the structural and electronic properties of many body systems. DFT has 

proved to be highly successful in describing structural and electronic properties in a vast class of 

materials, ranging from atoms and molecules to simple crystals and complex extended systems 

(including gasses and liquids). Furthermore DFT is computationally very simple. For these reasons 

DFT has become a common tool in first-principles calculations aimed at describing or even 

predicting   properties of molecular and condensed matter systems[7]. 

Traditional methods in electronic structure theory, in particular Hartree-Fock theory and its 

descendants are based on the complicated many-electron wave function. The main objective of 

density functional theory is to replace the many-body electronic wave function with the electronic 
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density as the basis quantity. Whereas the many-body wave function is dependent on 3N variables, 

three special variables for each of the N electrons, the density is only a function of three variables 

and is a simpler quantity to deal with both conceptually and practically. Consider a system of N 

interacting (spinless) electrons under an external potential ���� (usually the Coulomb potential of 

the nuclei). If the system has a non-degenerate ground state, it is obvious that there is only one 

ground-state charge density ���� that corresponds to a given ����. In 1964 Hohenberg and Kohn 

demonstrated the opposite, far less obvious result: there is only one external potential ���� that 

yields a given ground-state charge density ����. The demonstration is very simple and uses a 

reduction ad absurdum argument[8]. 

For many-electron Hamiltonian with ground state Wave function �  is given by: 

                                            � = 
 + � + �                                                                (1) 

Where  
 is the kinetic energy, � is the electron-electron interaction, � is the external potential. 

The charge density ���� as defined by Hohenberg and Kohn in 1964 is        

                                ���� = 
 �|����, ����, … ���|� ���…���                            (2) 

Considering a different Hamiltonian: �′ = 
 ′ + �′ + � ′; with ground state wave function � ′. 
Assuming the ground state charge densities are the same; i.e. ���� = �′�� ′�. Then the following 

inequality holds: 

                      � = ⟨�′�′�′⟩ < ⟨��′�⟩ = ⟨�� + � ′ − ��⟩                                          (3) 

                              That is: �′ < � + ������ − � ′��� ���� ��                                   (4) 

The inequality is strict because � and �′ are different, being eigenstate of different Hamiltonians. 

By reversing the primed and unprimed quantities, one obtains an absurd result.  This demonstrates 

that no two different potentials can have the same charge density. 

The major problem with DFT is the exact functional for exchange and correlation are not 

known except for the free electron gas. However approximations exist which permits the calculation 

of certain physical quantities quite accurately. In DFT the most widely used approximation is the 

local density approximation (LDA), where the functional depends only on the density at coordinate 

where the functional is evaluated:                                             

                                        �!"#$%��� = ����&�'!"�����&���&                                               (5) 

where '!"��� is the exchange-correlation energy density of uniform electron gas. In principle the 

LDA should only work when the density of the electron gas is almost homogeneous. It has been, 

however, found to give very good results even when the density of electron gas varies rapidly[9]. 

The generalized gradient approximations (GGA) are still local but also take into account the 

gradient of the density at the same coordinate, it has the general form: 

                  �!"((%��� = � )*���&�, +���&�,���&                               (6) 

The following are some of the different parameterizations of generalized gradient approximations 

are; am05 (GGA functional designed to include surface effects in self-consistent density functional 

theory, according to Armiento and Mattsson), blyp (The BLYP functional: Becke exchange and 
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Lee-Yang-Parr correlation), pbe (GGA of Perdew, Burke and Ernzerhof) and pbeint (PBEint 

functional according to Fabiano, L. A Constantin and F. Della Sala) [9]. Many different kinds of 

functional have been developed, and there is no easy way to tell which the best is. Some work well 

in some situations and fail in others. Some rely on fitted parameters to experimental data while 

others have been derived purely from the theoretical basis. 

 

2.2 Electronic Band Structure and Bandgap 

The periodic crystal structure is one of the most important aspects of materials science as 

many properties of materials depend on their crystal structures. One of its most immediate 

consequences is the arrangement of the electronic states within bands. For semiconductors, many 

properties are determined from these bands[10]. The electronic band structure of a solid describes 

those ranges of energy that an electron within the solid may have and ranges of energy that it may 

not have[11]. Band theory derives these bands and band gaps by examining the allowed quantum 

mechanical wave functions for an electron in a large, periodic lattice of atoms or molecules. Band 

theory has been successfully used to explain many physical properties of solids, such as electrical 

resistivity and optical absorption and forms the foundation of the understanding of all solid-state 

devices. Band structure calculations take advantage of the periodic nature of a crystal lattice, 

exploiting its symmetry.  

 The electronic band gaps of Perovskite materials are determined by the states at the valence 

band maximum (VBM) and conduction band minimum (CBM). A requisite for PSC to work 

properly just like in DSSC, the LUMO level of the light harvester should be higher than the 

conduction band edge (CBE) of anode material[12]; for example in TiO2 which is located at -4.0 eV 

[13]. This would provide the required driving force for a faster excited state electron injection. The 

magnitude of the band gap determines the onset of optical absorption and is closely related to the 

maximum voltage achievable in a photovoltaic device[14]. The energy band gaps of organic-

inorganic perovskite increase with increasing lattice parameter, contrary to most general 

semiconductors like Si and GaAs, this is due to the electronic structure of the Perovskite 

materials[15]. It was found experimentally that the band gap of CH3NH3PbI3 increases with lattice 

parameter, as evidenced by Photoluminescence (PL) results[16].  

 

2.3 Dielectric Constant 

 The dielectric constant is obtained from the response of the material to an external electric field, 

it depends of the frequency of the applied electric field and is described by a tensor for anisotropic 

system. The dielectric tensor '-	consists of a real part which represents the storage and an imaginary 

part which represents the loss[17]. The dielectric constant also called relative permittivity is value 

of the real part of the dielectric tensor at frequency equals to zero[18] i.e. /0�'-�1 = 0��. The 

amount electric field attenuated in a substance compared to from a vacuum is indicated by its 

dielectric constant. Dielectric constant determines the magnitude of the coulomb interaction 
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between electron-hole pairs and charge carriers as well as any fixed ionic charges in the lattice, high 

dielectric constants are required for high efficiency solar cell. Dielectric constant for CH3NH3PbI3 is 

in the range of 5–7[19]. 

 

2.4 Phonons: Harmonic Vibrations  

In reciprocal space, the equation of motion for the vibration of a periodic array of harmonic 

atoms for each reciprocal vector q is determined by dynamical matrix, 3�4�. 
                                               5�4�6�4� = 1��4�	6�4�                                                (7) 

where 1��4� is eigenvalue, and 6�4� is eigenvector of the dynamical matrix 5�4� and they 

completely describe the dynamics of the system in the harmonic approximation, which is a 

superposition of harmonic oscillators, one for each eigenvalue[20]. 

The density of state, 7�1� is an important quantity; 

								7�1� = 89 �4�2;��<
	 1|∇1�4�|																																																																												�8� 

 It allows the determination of any integrals (e.g. Helmholtz free energy) that only depends on 

eigenvalue, ⍵. The Helmholtz (vibrational) free energy ABC�
, �� which has no explicit dependence 

on the volume V is given by: 

ABC�
, �� = 9�17�1�Dℏ12 + FG
	H� I1 − 0JK ℏLMNOPQR																																�9� 
The heat capacity, TU at constant volume can be determined from Helmholtz free energy[21]; 

																																		TU = −
IABC�
, ��V
� Q
U
																																																							�10� 

 

2.5 Lattice Expansion in the Quasi-Harmonic Approximation 

  In an ideal harmonic system, which is fully determined by the dynamical matrix 5�4�, its 

Hamiltonian does not depend on the volume, this implies that the harmonic Hamiltonian is 

independent of the lattice parameters, and as a consequence of this, the lattice expansion 

coefficient	W�
� vanishes [20]. 

																											W�
� = 1X JVXV
PY 																																																																					�11�	
To determine the temperature dependence of energy bandgap there is need to determine the lattice 

expansion. The quasi-harmonic approximation is used to account for the anharmonic effects in the 

determination of the lattice expansion[22].  The usage of the quasi-harmonic approximation requires 

the determination of how the phonons, i.e., the vibrational band structures and the associated free 

energies, change with the volume[21]. 
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3. Methodology  

In this work ab-initio calculation in the framework of density functional theory DFT, as 

implemented in the FHI-aims package was performed[23]. The generalized gradient approximation 

GGA with the blyp parameterization was employed for the evaluation of the exchange-correlation 

energy. Optimization of the followings configuration parameters; occupation type (Gaussian or 

Fermi), charge mix param, initial moment, and n max pulay was also performed. The Gamma-

centered grid method has been chosen for sampling the Brillion zone.  Full relaxation of the atomic 

positions within the unit cell was performed following the Broyden-Fletcher Goldfarb-Shanno 

(BFGS) optimization algorithm. Optimal lattice constant was also determined for each structure. 

The k-paths (Z − [ −\ − Z − / − [|\ − /� [24]was used in the band structure analysis. Energy 

band gap were calculated for the optimized geometries using the optimized configuration 

parameters.  

To determine of how the vibrational band structures and the associated free energies, change 

with the volume of materials. The optimal lattice constant of the materials were determined by 

finding the minimum of the total energy �$]^��� and ABC�
, �� by using the Birch-Murnaghan’s 

equation of state[25]. Though, in the canonical ensemble, the relevant thermodynamic potential that 

needs to be minimized is the free energy A�
, �	� which is given by: 

                                                         A�
, �	� = �$]^��� + ABC�
, ��																																				�12�  
 To account for the volume dependence of A�
, �	�, the total energy, �$]^��� and free energy, 

ABC�
, ��	 were calculated for a series of lattice constants. Eq. (12) was then evaluated and 

minimized using the Birch-Murnaghan’s Equation of states, the phonopy program package and its 

FHI-aims interface phonopy-FHI-aims are used here. A FHI-aims python script titled 

Compute_ZPE_and_lattice_expansion.py [21] is used to perform the above procedure, this script requires 

the following inputs; optimal (equilibrium) lattice constant, the temperature range (0 to 318 K) and 

geometry information. The script gives two output files; one contains temperature, the lattice 

constant and the lattice expansion coefficient and the other contains the equilibrium lattice constant 

computed with and without zero point energy (ZPE). The investigation of the temperature 

dependence of the electronic band gaps of materials was carried out using a second python script 

titled Compute_bandgap_at_different_volumes.py [21]. Here electronic band structure calculations were 

performed for geometries constructed using the lattice constants generated from by the first script 

for temperature range of 0 to 308 K  in a step of 11 K. This script gives an output file that contains 

both the lattice constants and the energy bandgap as a function of temperature. To obtain the linear 

dielectric tensor in FHI-aims the tag compute_dielectric is added in control.in file. It calculates and 

output the component of the imaginary and real part of the inter-band and intra-band contribution to 

the linear dielectric tensor. The linear dielectric tensor was determined in [100], [010] and [001] 

cubic directions for temperature range of 0 to 308 K in a step of 22 K. 
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4. Results and Discussion 

The LUMO, HOMO, energy bandgap and lattice constant calculated are given in Table 1 along 

with reported theoretical and experimental band gap values where available.  

Table 2.The comparison of Energy Bandgap and Lattice constant for CH3NH3SnI3 

 This work Reported 

Theoretical  Experimental 

LUMO (eV) -4.07492815 - - 

HOMO (eV)           -5.12601223 - - 

Bandgap (eV) 1.051 0.169[15] 1.30[26] 

Lattice constant From Single 

point calculation 

6.033 6.163 6.24[27] 

From phonopy 

without ZPE 

6.026 

From phonopy 

with ZPE 

6.049 

 

The bandgap evaluated in this work for CH3NH3SnI3 has an underestimation of 0.249 eV which 

amount to 19.2% with experimental reported value. 

                              

In Fig.1 (a) linear thermal expansion coefficient,	W given in Eq. (11) was plotted against 

temperature for temperature range of 0 to 318 K, while in Fig. 1 (b) shows the same plot but for 

temperature range of 0 to 25 K for more clarity.  In Fig. 2 shows the graph of lattice constant 

against temperature, Fig. 3.Shows the shift in bandgap due to lattice expansion. The lattice constant 

obtained using phonopy with ZPE is close to experimental reported values with an underestimation 

of 3.01%. Figure 1(a) shows that the linear thermal expansion coefficient does not change 

constantly with temperature, and it is negative for some very low temperatures, but in Figure 1(b) 

the negative expansion (contraction) can be seen to occur between the temperature ranges of 0 to 

3K. There is a constant increment of the expansion coefficient at temperatures above 3K. The 

negative expansion observed for this materials is similar to those observed in some semiconductors 

such as Germanium, Silicon, Diamond and Gallium Arsenide[26]. The changes in lattice constant 

and bandgap with temperature is the same; little changes were observed at lower temperatures (0 to 

3 K) for both lattice constant and bandgap [Figs. 2 and 3], it is obvious the bandgap varies linearly 

with lattice constant as shown in Fig. 4, the band gap  increase with increasing lattice parameter like 

in most perovskite materials[15], contrary to most general semiconductors like Si and GaAs. 
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Fig. 1   Graph of linear thermal expansion coefficient against temperature  

(a) for range of 0 to 318 K and (b) for range of 0 to 25 K 

                                      

Fig. 2 Graph of lattice constant against temperature: for temperature range of 0 to 308 K      

        in a step of 11 K 
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Fig. 3   Graph of bandgap against temperature: for temperature range of 0 to 308 K in a step of 22 K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 . Graph of bandgap against lattice constant 
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Fig. 5  Graph of Real components of complex dielectric tensor against frequency in [100] direction 

for temperature range of 0 to 308 K in a step of 22 K., insert shows dielectric tensors at frequency 

equals to zero (i.e.  Re [ϵxx (ω = 0)]) 

          

Fig. 6  Graph of Real components of complex dielectric tensor against frequency in [010] direction 

for temperature range of 0 to 308 K in a step of 22 K., insert shows dielectric tensors at frequency 

equals to zero (i.e.  Re [ϵyy (ω = 0)]) 
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Fig. 7 Graph of Real components of complex dielectric tensor against frequency in [001] direction 

for temperature range of 0 to 308 K in a step of 22 K., insert shows dielectric tensors at freque

equals to zero (i.e.  Re [

 

The dielectric constant (relative permittivity

tensor at frequency equals to zero (i.e.

range of 0 to 308 K were given in Table 2. 

directions for all the temperature 

was obtained at 88 K corresponding to latti

obtained at 66 K corresponding to lattice constant of 6.052 

values obtained in [001] direction were close to the reported value of 8.2

obtained is 8.719 while the lowest is 8.655. 

within the temperature range of 0 

three directions. 
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Graph of Real components of complex dielectric tensor against frequency in [001] direction 

for temperature range of 0 to 308 K in a step of 22 K., insert shows dielectric tensors at freque

equals to zero (i.e.  Re [ϵzz (ω = 0)]) 

relative permittivity) which is value of the real part of the 

nsor at frequency equals to zero (i.e.  /0�'�1 = 0�� ) in each of the three directions for 

given in Table 2. The dielectric constants obtained at the [100] and [010] 

ns for all the temperature have very close values. The highest value of dielectric constants 

88 K corresponding to lattice constant of 6.053 Å while the 

66 K corresponding to lattice constant of 6.052 Å	 for all the three (3) directions.

values obtained in [001] direction were close to the reported value of 8.2[27]; the highest value 

while the lowest is 8.655. There is a gap between the dielectric constants obtain 

within the temperature range of 0 – 66 K with those obtained within the range of 88 

, vol. 5, No. 2 (2018) 

Graph of Real components of complex dielectric tensor against frequency in [001] direction 

for temperature range of 0 to 308 K in a step of 22 K., insert shows dielectric tensors at frequency 

value of the real part of the linear dielectric 

) in each of the three directions for temperature 

dielectric constants obtained at the [100] and [010] 

dielectric constants 

 lowest value was 

for all the three (3) directions. The 

; the highest value 

There is a gap between the dielectric constants obtain 

obtained within the range of 88 – 308 K for the 
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Table 3  Temperatures and lattice constants with corresponding dielectric constant (ϵ)  

(i.e.  Re�ϵ�ω = 0�� ) at each of the directions 

Temperature 

(K) 

Lattice 

Constant (ÅÅÅÅ) 

de�f�g = h�� 
[100] [010] [001] 

0 6.049 1.387 1.429 8.676 

22 6.050 1.386 1.427 8.672 

44 6.051 1.383 1.425 8.665 

66 6.052 1.379 1.421 8.655 

88 6.053 1.437 1.479 8.719 

110 6.055 1.434 1.476 8.710 

132 6.056 1.431 1.473 8.703 

154 6.056 1.429 1.471 8.697 

176 6.057 1.428 1.470 8.694 

198 6.057 1.428 1.470 8.693 

220 6.057 1.428 1.470 8.694 

242 6.057 1.428 1.470 8.695 

264 6.056 1.429 1.471 8.698 

286 6.056 1.431 1.473 8.701 

308 6.055 1.432 1.474 8.705 

 

 

5. Conclusion  

     In this work; geometry construction and configuration parameters optimization was carried 

out and the optimal lattice constant was determined for CH3NH3SnI3. Geometry relaxation was also 

performed for the structure. The band structure of CH3NH3SnI3 was estimated and the result shows 

that it has is a band gap of 1.051 eV. The lattice constant obtained using phonopy with ZPE is close 

to experimental reported values with an underestimation of 3.01%. The temperature dependent of 

lattice constant was studied in the temperature range of 0 to 318 K. At the same temperature range, 

shift in energy bandgap and dielectric constant due to lattice expansion was also investigated. It was 

shown that temperature affect the bandgap and dielectric constant of CH3NH3SnI3, and 

subsequently it affect the performance of CH3NH3SnI3 perovskite solar cells.  
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