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Abstract: A single layer single feed rectangular microstrip antenna is designed and 

parametrically studied. Multifrequency operation is achieved along with the compactness. 

Complimentary symmetrical slots have been added at the edges of the patch with an extra slot 

placed diagonally at its top right corner to achieve multifrequency with a reduced size. It has 

been found that modifying the length and the width of the slots result in a rapid change in the 

prospect of frequency, gain, VSWR etc. The simulated result of the proposed antenna shows 

that it resonates at 3.79 GHz, 5.43 GHz, 5.83 GHz and 6.44 GHz. The proposed antenna has 

achieved 56.52% size reduction as compared with the conventional rectangular microstrip 

patch antenna. A profound evaluation of the radiation pattern, gain, voltage standing wave 

ratio, reflection coefficient (���	parameter) and radiation efficiency of the proposed antenna 

is discussed in this paper.  
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1. Introduction 

 In the field of microstrip patch antenna, the size reduction of the antenna is a major concern 

because all the wireless communication systems are becoming compact in size. As the systems are 

getting cheaper the size of the components integrated into it must be reduced in that manner. As 

antenna is one of the components being used, the design of compact microstrip patch antenna is a 

topic of intense research. Numerous authors have achieved compactness by various methods [1-9]. 

Gautam et al. [1] designed a compact microstrip patch antenna with 39% reduction in size by 

inserting 4 slits on the square shaped patch. Kuo and Wong reported compactness of 56% by 
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introducing meandered slots on the ground plane of the radiating patch antenna [2]. A single feed 

microstrip antenna with a reduction of 40% was reported by inserting slots of optimum dimensions 

on the radiating edges of the patch and parallel to the non-radiating edge [3]. A multi-frequency 

microstrip antenna with compactness of 41% was reported by varying the position and the 

dimensions of the rectangular slots of the patch [4]. Song et al. [5] reported a 43.9% miniaturized 

printed antenna using perturbation of radiating slot. Xue et al. [6] reported that a size reduction of 

50% was achieved on a window shaped microstrip patch antenna. It was reported by Chakraborty et 

al. [7] that a maximum miniaturization of 46.2% could be achieved by embedding a triangular slot 

at the upper edge of the radiating patch. A miniaturization of 47.4% was reported by cutting three 

unequal rectangular slots on the edge of the radiating patch [8]. A coaxial probe-fed printed antenna 

results in 51% size reduction by etching out a symmetrical pattern of crossed slots from the surface 

of the patch [9]. The work presented in this paper is also related to a miniaturized multifrequency 

microstrip patch antenna to satisfy the wireless LAN or WLAN and worldwide interoperability 

microwave access or WiMAX. The antenna is constructed with an FR4 substrate. Our main 

objective is to reduce the size and to achieve multiple resonating frequencies by modifying only the 

patch of the antenna. By introducing complimentary symmetrical slots to the patch and truncating 

the top right corner, multiple resonating frequencies are acquired and the size of the antenna is 

reduced to 56.52% as compared to the conventional rectangular patch antenna. The proposed 

antenna resonates at multiple frequencies such as 3.79 GHz, 5.43 GHz, 5.83 GHz and 6.44 GHz. 

The proposed antenna configuration was optimised by MOM based EM simulator IE3D [10]. 

 

2. Antenna configuration:  

The structure of the conventional and proposed antenna is designed and analyzed using IE3D 

software. The configuration o antenna 1 (conventional antenna) is shown in Figure 1. The antenna 1 

operates at 5.5 GHz. The length (L) and the width (W) of the  conventional antenna are 12mm and 

16mm respectively. The dielectric material chosen for this antenna is an FR4 epoxy with a dielectric 

constant (εr) = 4.4 and the height of the substrate is (h) = 1.5875mm. The width (W) and the length 

(L) of the conventional patch antenna in terms of wavelength are 0.293λr and 0.2λr  respectively 

where λr is the wavelength of the resonating frequency i.e., 5.5GHz. A coaxial probe feed of radius 

0.5mm with an unmodified ground plane arrangement is located at a position of W/2 (8mm) and L/3 

(4mm) from the right side edge of the patch to match the impedance to its best level. 

 The antenna 2 (proposed antenna) is also designed with the similar substrate and same 

dimensions of 16mm × 12mm as shown in Figure 2. Four complimentary symmetrical slots along 

the edge have been introduced to the patch, among which one is at the right bottom side and the 

other one is at the top left side and two slots at the centre right and left side of the patch with an 

extra slot placed diagonally at the top right corner. The addition of this extra slot led us to an 

improvement of the reflection coefficient of the proposed antenna for multiple resonating 

frequencies. The coaxial probe (radius = 0.5mm) feed location has been changed to (X=−2 mm, −2 
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mm) from the centre (X = 0	mm, Y = 0	mm) of the rectangular patch for best impedance matching. 

The alteration of the feed location of the proposed antenna structure results in a less sharp resonance 

and high impedance matching at the corresponding frequencies. Electromagnetic simulator IE3D 

which is based on the method of moment has been used for the numerical investigation of the 

proposed antenna. The optimal dimensions of the patch have been achieved through the parametric 

study of the proposed patch which is given as: L=12 mm, W=16 mm, L1=L2=6mm, L3=L4=3 mm, 

L5=2 mm, L6=4 mm, W1=W2=W3=W4=W5=0.5 mm, W6=6 mm. 

 

Figure 1: Configuration of Antenna1      Figure 2: configuration of Antenna 2 

(Conventional Antenna)                          (Proposed Antenna) 

 

3. Analysis and working of the proposed antenna:  

The geometry of the proposed antenna is constructed through 5 different steps of 

modifications which is depicted in Figure 3. The conventional antenna resonates at the frequency of 

5.5 GHz whereas the proposed antenna resonates at different frequencies ranging from 3.79 to 6.44 

GHz by incorporation of the slots to the proposed patch. Among the 5 cases, for the first case only 

having the right horizontal slot on the bottom of the patch results in resonating at three different 

frequencies which are 4.158 GHz, 5.408 GHz and 6.192 GHz respectively. It is seen in the case 2 

which incorporates the top left slot of the patch, fundamental mode is excited at 4.080 GHz, 5.392 

GHz and 5.344 GHz respectively. In case 3, it includes the centre-right slot which results in 

resonating 3.924 GHz, 5.44 GHz and 5.845 GHz respectively. In case 4 the incorporation of the 

centre-left slot on the patch results the resonance at 4 different frequencies below -10 dB which are 

3.801 GHz, 5.446 GHz, 5.846 GHz and 6.802 GHz respectively. Another resonance is observed at 

6.448 GHz but the impedance matching is very poor and reflection coefficient is only -8.614 dB. 

Finally in case 5, there (proposed) the structure is modified by inserting a diagonally placed slot on 

the top right corner of the patch. Now the proposed antenna resonates at 4 different frequencies 

which are 3.796 GHz, 5.437 GHz, 5.842 GHz and 6.442 GHz. The results of analysis for different 

geometrical shapes are shown in Table-1.  
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Figure 3: S11 parameters at different cases of the evolution of the antenna 

 

 

The proposed antenna provides us advantages which are given below:  

I. As the resonant frequency further reduces it offers better compactness up to 56.52 % 

compared to the conventional antenna. 

II. Superiority in impedance matching is achieved at the corresponding frequencies because of 

the improvement in reflection coefficient and VSWR 
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Table 1: Variations of simulated results in different cases of evolution of the proposed antenna 

 

4. Parametric study of the proposed antenna:  

The various effects of altering the dimensions of the slots on the proposed antenna for 

achieving the desired resonant frequencies are investigated through parametric study. The dominant 

parameters are optimized by simulating the antenna by changing one geometry parameter slightly 

from the proposed design while all the other parameters are fixed at their proposed values. The 

parametric study to achieve the proposed parameters of the proposed antenna is discussed in the 

section below with a fixed feeding location. 

   4.1 Effect of Antenna parameter ��: The variations of the reflection coefficient and the resonant 

frequency of the proposed antenna as a function of design parameter ��is shown in Figure 4. The 

first resonant frequency varies a little with the increment of the proposed dimension of this 

parameter. The first resonant frequency is tuned from 3.69 to 3.82 GHz by the variations in the 

dimension of �� parameter. But only at the proposed value, the peak gain is observed for the first 

resonant frequency. The first resonant frequency  

 

Different 

Cases 

Resonant 

Frequency 

(GHz) 

S11  

(dB) 

Gain 

(dBi) 
VSWR 

Size 

Reduction 

(%) 

Case 1 

f1=4.158  

f2=5.408  

f3=6.192  

-15.229 

-12.632 

-12.778 

2.252 

2.692 

-1.701 

1.4082 

1.5974 

1.6044 

47.66 

Case 2 

f1=4.080  

f2=5.392  

f3=5.844 

-20.165 

-14.343 

-17.928 

1.483 

2.142 

-1.923 

1.2125 

1.4786 

1.2834 

49.65 

Case 3 

f1=3.924  

f2=5.442  

f3=5.845 

-21.469 

-14.513 

-18.579 

1.593 

3.241 

-1.703 

1.1596 

1.4535 

1.2514 

53.49 

Case 4 

f1=3.801  

f2=5.446  

f3=5.846 

f4=6.448  

f5=6.802 

-16.147 

-14.093 

-18.116 

-8.614 

-9.642 

1.153 

2.802 

-2.472 

-3.571 

-0.714 

1.3205 

1.4707 

1.2681 

2.1341 

2.0703 

56.43 

Case 5 

(Proposed) 

f1=3.796  

f2=5.437  

f3=5.842 

f4=6.442 

f2=6.809  

-18.635 

-14.290 

-24.037 

-10.912 

-8.414 

1.153 

3.250 

-2.912 

-3.053 

-0.071 

1.2663 

1.4728 

1.1190 

1.1910 

2.2204 

56.52% 
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Figure 4: Variations of S11 for different values of L1 parameter 

 

4.2 Effect of Antenna parameter W1: The effect of the parameter W1 is evaluated throughout the 

parametric study shown in Figure 5, which describes that the proposed value of this parameter is the 

best among other values. With overall study, the first resonant frequency remains unchanged but at 

the proposed value, it provides the highest impedance matching at respective resonant frequencies. 

From the figure, it can be clearly observed that only at the proposed value second and third resonant 

frequencies have the highest S11. As the values of the proposed parameter are changing, the S11 

parameters are decreasing. The fourth resonant frequency is achieved using the parameter value set 

at the proposed dimension. Another frequency 6.84 GHz has been achieved at −8.27 dB but the 

reflection coefficient must be below -10 dB which is the main criterion for an antenna to radiate in 

the far field region. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Variations of S11 for different values of W1 parameter 
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4.3 Effect of Antenna parameter L2: Various simulated S11 curves for the changing dimension of 

L2 are illustrated in Figure 6. As we can see the first resonant frequency remains almost unchanged 

throughout the parametric study of the design parameter L2. In the same way, the second resonant 

frequency also provides quite the same reflection coefficient as compared to the proposed 

dimension of the parameter irrespective of the change in slot length. The third resonant frequency 

only resonates at the proposed dimension of the patch. It is clearly seen from the picture that the 

third resonant frequency at the proposed dimension has the highest value of S11. So the optimum 

value of L2 is set to 6 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 6: Variations of S11 for different values of L2 parameter 

 

     4.4 Effect of Antenna parameter W2: Figure 7 illustrates the various S11 –parameter curves for 

changing the dimension of W2. The first, second, third and the fourth frequency have same 

excitation mode with different S11 parameters. With the help of this parametric study we can say 

that changing the dimension of W2 does not affect the frequency shifting too much with respect to 

the S11 parameter. But only at the proposed dimension, we achieved a positive gain across the 

respective frequencies. Thus an optimum value of this parameter is selected at W2=0.5 mm. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Variations of S11 for different values of W2 parameter 
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4.5 Effect of Antenna parameter L3: In Figure 8, we can see that with the increase of the 

parameter L3 the first resonant frequency is reduced to 3.51 GHz with a reflection coefficient of -

14.27 dB. The first resonant frequency can be further shifted by increasing the length of the slot but 

only at the proposed dimension the impedance matched more properly and provides a good gain. As 

the value of L3 is further increased or decreased, the gain of the antenna degrades. The second and 

the third resonant frequencies provide the best impedance match at the proposed dimension. At L3 = 

4 mm, the fourth frequency 6.35 GHz resonates at -5.78 dB which is very poor in impedance 

matching but at other values of L3 the fourth resonant frequency provides a good impedance match. 

Hence the optimum value for this parameter is set to L3 = 3 mm. 

4.6 Effect of Antenna parameter W3:  Similarly Figure 9 describes the S11 for different 

values of W3. The first and second resonant frequencies remain unchanged throughout the 

parametric study of the various dimensions of W3. With the value of W3 = 1 mm the third resonant 

frequency has the highest S11. With further increase in the value of this design parameter, the fourth 

resonant frequency faces a poor impedance matching. Only at the proposed value, it provides the 

best impedance matching except at W3 = 1 mm which provides better impedance matching. With 

the overall study of W3, the proposed value has been selected as optimum. 

 

 

 

 

 

Figure 8: Variations of S11 for different values of L3 parameter 

 

 

 

 

 

 

 

Figure 9: Variations of S11 for different values of W3 parameter 
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4.7 Effect of Antenna parameter L4: An illustration of the parametric study of the design 

parameter L4 has been shown in Figure 10. The best impedance matching has been achieved at L4 = 

1 mm for the first and the third frequency but the first frequency has been increased to 3.92 GHz 

from the proposed value 3.79 GHz and the second and third frequency remain unchanged 

throughout the parametric study. The excitation of the fourth resonant frequency is not possible for 

L4 = 1 mm and 2 mm because the S11 parameter at these dimensions is −5.20 dB and −6.21 dB. 

Only at the proposed dimension, the fourth frequency excitation is possible. Some other frequencies 

have been achieved too but their respective S11 parameters are very low.  

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Variations of S11 for different values of L4 parameter 

     4.8 Effect of Antenna parameter W4: According to Figure 11 the first resonant frequency for 

the various dimensions of W4 remains almost unalterable with different S11 parameters. At W4 = 0.3 

mm the highest S11 parameters have been achieved for the first and third frequency. The second 

frequency is almost same. But at the proposed value of W4 the achieved resonant frequencies have 

been selected due to the peak values of gain recognized for the first and second resonant 

frequencies. Hence an optimum value for this is set at 0.5 mm. 

 

Figure 11: Variations of S11 for different values of W4 parameter 
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        4.9 Effect of Antenna parameter L5: Figure 12 demonstrates the S11 curve for various 

frequencies achieved by changing the dimension L5. As it is clearly seen in the Figure that the 

frequencies achieved by changing the dimension don’t vary too much what varies is the S11 

parameter for different frequencies. Below −10 dB there are four resonant frequencies 3.79, 5.43, 

5.84 and 6.44 GHz respectively. Another frequency has been achieved at −8.41 dB level which 

cannot be accepted as per the reason is concerned for radiation in the far region. Only at the 

proposed dimension, a good size reduction with an acceptable value of gain is achieved that is why 

the optimum value for L5 is set at 3 mm. 

 

 

 

 

 

 

 

 

 

 

Figure 12: Variations of S11 for different values of L5 parameter 

 

         4.10 Effect of Antenna parameter W5: The parametric study of W5 parameter is shown in 

Figure 13. It can be clearly observed that the frequencies are quite same throughout the parametric 

study of W5 with different values of S11 parameter. At the proposed dimension of W5 the gain is 

achieved at an optimum level for the first frequency for which the maximum size reduction is 

reported. 

 

 

 

 

 

 

 

 

 

Figure 13: Variations of S11 for different values of W5 parameter 
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5. Surface current distribution of the conventional and the proposed antenna: 

 Figure 14(a) to 14(e) demonstrates the excitation behaviour and surface current density for 

different resonant frequencies of the conventional and the proposed antenna. Figure 14(a) clearly 

states that the surface current density for the conventional antenna is very little at the left side of the 

radiating patch. Hence from [11] it can be said that by introducing new supplementary slots to the 

patch the surface current density can be increased. Due to the changes that have been imported by 

the addition of new extra slots to the patch, the surface current density has changed. Figure 14(b) 

clearly illustrates that for the resonant frequency operation of 3.79 GHz, the surface current density 

is mainly concentrated around the horizontal and vertical sections of the supplementary slots that 

have been added to the radiating patch. The 5.44 GHz excitation provides a bulky surface current 

density along the horizontal side of upper left slot and the bottom right slot has been revealed in 

Figure 14(c).  

Finally from the depiction of Figure 14(e) it can be clearly observed that for the excitation mode 

of 6.44 GHz, the surface current density is huge at the arms across L1, W1 and L2, W2. 

Hence through the overall study of S11 parameter and the surface current density it is clearly 

figured out that the geometrical mechanism is necessary for the four resonant frequencies. The 

current density mainly concentrates around the edges of the slot and in that way the current path 

increases. The miniaturization of the proposed antenna is due to the lightening effect of the surface 

current density which leads to drop off the resonant frequency. 
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Figure 14: Surface current distribution for Conventional antenna at (a) 5.5 GHz and for the 

proposed antenna at (b) 3.79 GHz, (c) 5.44 GHz, (d) 
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(e) 

Figure 14: Surface current distribution for Conventional antenna at (a) 5.5 GHz and for the 

proposed antenna at (b) 3.79 GHz, (c) 5.44 GHz, (d) 5.84 GHz and (e) 6.44GHz 

, vol. 5, No. 2 (2018) 

Figure 14: Surface current distribution for Conventional antenna at (a) 5.5 GHz and for the 



Sabir Ali et al                            Journal for Foundations and Applications of Physics, vol. 5, No. 2 (2018) 

89 
 

6. Results and discussion:  

The simulated S11 parameter of the reference conventional antenna is shown in Figure 15. It can 

be observed from Figure 15 that the conventional antenna resonates around 5.5 GHz and after 

modification of the patch by introducing new supplementary slots to the patch, multiple resonant 

frequencies have been achieved [see Figure 16]. Figure 17 shows the simulated gain for the 

proposed antenna at its respective resonant frequencies where the peak gain for the proposed 

antenna is around 3.25dBi for the second resonant frequency and for the first resonant frequency we 

achieved a gain of around 1.15dBi. The plot of VSWR versus frequency of the proposed antenna is 

shown in Figure 18. The normalized E-plane radiation pattern of the proposed antenna has been 

shown in Figure 19. According to the figure, it can be said that nearly identical broadside radiation 

pattern is achieved at all of the resonant frequencies. Throughout different radiation pattern it is 

clearly observed that the responses are nearly steady for different resonant frequencies. There is 

significant separation between the co polar and cross polarization level at respective resonant 

frequencies, which indicates less interference. 

 

 

Fig. 15: S11 parameter of conventional antenna   Fig. 16: S11 parameter of proposed antenna 

         

 

 

 

 

 

 

 

 

 

  

Fig. 17: Plot of Gain of the proposed antenna    Fig. 18: VSWR of the proposed antenna 
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Figure 19: Normalized E-plane radiation pattern of the proposed antenna at (a) 3.79 GHz, (b) 5.44 

GHz, (c) 5.84 GHz and (d) 6.44 GHz

 

 

7. Conclusion: 

           A single feed microstrip patch antenna with multifrequency

and discussed in this paper. The proposed antenna resonates at four different frequencies i.e., 3.79, 

5.44, 5.84 and 6.44 GHz. The addition of the supplementary slots to the proposed patch reduced the 

first resonant frequency up to 3.79 GHz and a size reduction of 56.52 % is achieved. Across the 

resonant frequencies stability in radiation pattern is obtained along with moderate gain. The 

proposed antenna operates at respective resonant frequencies with very low value of VSWR. 

main application of the antenna is

interoperability microwave access (

microwave L and C band applications
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radiation pattern of the proposed antenna at (a) 3.79 GHz, (b) 5.44 

GHz, (c) 5.84 GHz and (d) 6.44 GHz 

A single feed microstrip patch antenna with multifrequency operation has been proposed 

and discussed in this paper. The proposed antenna resonates at four different frequencies i.e., 3.79, 

5.44, 5.84 and 6.44 GHz. The addition of the supplementary slots to the proposed patch reduced the 

p to 3.79 GHz and a size reduction of 56.52 % is achieved. Across the 

resonant frequencies stability in radiation pattern is obtained along with moderate gain. The 

proposed antenna operates at respective resonant frequencies with very low value of VSWR. 

main application of the antenna is to satisfy the wireless LAN (WLAN) and 

operability microwave access (WiMAX). The proposed antenna is also applicable for 

microwave L and C band applications.  

, vol. 5, No. 2 (2018) 

radiation pattern of the proposed antenna at (a) 3.79 GHz, (b) 5.44 

operation has been proposed 

and discussed in this paper. The proposed antenna resonates at four different frequencies i.e., 3.79, 

5.44, 5.84 and 6.44 GHz. The addition of the supplementary slots to the proposed patch reduced the 

p to 3.79 GHz and a size reduction of 56.52 % is achieved. Across the 

resonant frequencies stability in radiation pattern is obtained along with moderate gain. The 

proposed antenna operates at respective resonant frequencies with very low value of VSWR. The 

(WLAN) and worldwide 

). The proposed antenna is also applicable for 
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