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Abstract 

    To investigate the wettability of spherical drops in a smooth and homogeneous 

cylindrical capillary with hemispherical head, based on Gibbs’s method of dividing surface 

and Rusanov’s concept of dividing line, the contact angle of spherical droplets has been 

successfully derived considering the effects of the line tension. Additionally, under the 

condition of ignoring the line tension, the equation describing the contact angle is simplified 

as the classical Young equation. 
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1. Introduction 

In the last two decades, the investigations in wetting and spreading of liquid drops on a solid 

substrate have increased substantially, particularly since 2010 [1-4]. The contact angle between 

liquid drops and solids is a crucial parameter that characteristics the wetting performance in many 

industrial applications and our everyday life [5-9]. Wettability of ideal surfaces is presented by the 

well-known Young equation [10] 

    cos SV SL

Y

LV

σ σ
θ

σ

−
=  (1) 

where
Y

θ is the Young angle, and
SV

σ ,
SL

σ and
LV

σ are the surface tensions at the solid/liquid, 

solid/liquid and liquid/vapor interfaces, separately. 

In wetting phenomena, the line at which solid, liquid and vapor phases contact each other is 

called the triple phase line. The characteristic of the triple phase line plays a key role in actual 
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wetting applications. The line tension defined as the free energy per unit length of the triple phase 

line is a crucial parameter in surface wetting. The concept of the line tension was first proposed 

thermodynamically by Gibbs. W. C. Jensen and D. Q. Li [11] measured the line tension of the 

capillary rise in a conical tube. A. I. Rusanov et al [12] studied the line tension dependence on the 

curvature radius of the triple phase line. A. Amirfazli and A. W. Neumann [13] reviewed both 

theoretically and experimentally the line tension studies. B. V. Toshev [14] presented the 

thermodynamic theory of thin liquid films considering the impacts of the line tension. B. M. Law et 

al [15] summarized the effects of the line tension on drops and particles at surfaces. 

Many scholars have ever growing interest in understanding the wetting and spreading 

phenomena of liquids on solids due regard to its extensive applications. However, the wetting of 

spherical drops in a smooth and homogeneous cylindrical capillary with hemisphere head has not 

been investigated to this day. In this paper, based on Gibbs’s method of dividing surface and 

Rusanov’s concept of dividing line, the contact angle describing the wetting of spherical drops in a 

smooth and homogeneous cylindrical capillary with hemisphere head is derived considering the 

effects of the line tension. Accordingly, the generalized Young equation of the derived contact 

angle is simplified as the classical Young equation when neglecting the line tension. 

 

2. Calculation of free energies 

Consider a single-component spherical liquid droplet (phase L) contacting with vapor (phase 

V) in equilibrium, placed in a smooth and homogeneous cylindrical capillary (phase S) with 

hemisphere head, as illustrated in Figure 1. 
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Figure 1. Spherical droplet in a smooth and homogeneous cylindrical capillary with 

hemisphere head 
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For sake of generality, assume that the height of the liquid drop exceeds the hemisphere head 

in Figure 1, that is, sinH R β> . According to both Gibbs’s theory of dividing surface and Rusanov’s 

approach of dividing line, the free energy of the solid-liquid-vapor system in Figure 1 is given by 

[16] 

L V SL SV LV SLV
F F F F F F F= + + + + +  (2) 

where 

L L L L L
F p V Nµ= − +                            (3) 

V V V V V
F p V Nµ= − +                           (4) 

SL SL SL SL SL
F A Nσ µ= +                          (5) 

SV SV SV SV SV
F A Nσ µ= +                         (6) 

LV LV LV LV LV
F A Nσ µ= +

 
    (7) 

SLV SLV SLV SLV
F kL Nµ= +

 
    (8) 

where F is the free energy (the single, double, and triple subscripts denote the quantities 

concerning the corresponding phases, such as the subscript SLV being the triple phase line), p is the 

pressure,V is the volume, µ is the chemical potential, N is the mole number of molecule,σ is the 

surface energy of unit area, A is the surface area, k is the line tension, and L is the length of the triple 

phase line. 

For simplicity, suppose that the gravity and the other forces or fields are neglected, so the 

equilibrium shape of the spherical drop in Figure 1 is the combination of both a hemisphere, a 

cylindricity and a segment. As a result, the drop volume
L

V appearing in Eq. (3) is expressed as 

( ) ( ) ( )
23 3 2 2 32

sin sin sin 1 cos 2 cos
3 3

LV R R H R R
π π

β π β β β β= + − + − +          (9)
 

where R is the drop radius, β is the apparent contact angle, and H is the drop height. 

The entire volume
t

V of the system is 

t L V
V V V= +  (10) 

The area
LV

A of the liquid-vapor interface is 

( )2
2 1 cosLVA Rπ β= −                       (11) 

The area
SL

A of the solid-liquid interface is 

2 sin
SL

A RHπ β=  (12) 

The total area t
A of the solid-liquid and solid-vapor interfaces is 

t SL SV
A A A= +  (13) 

The length of the triple phase line is 

2 sin
SLV

L Rπ β=  (14) 

Based on the relations stated above, various free energies can be represented, separately, as 
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( ) ( ) ( )
23 3 2 2 32

sin sin sin 1 cos 2 cos
3 3

L L

L L

F p R R H R R
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β π β β β β

µ

 
= − ⋅ + − + − +  

+

       (15)   

( )
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23
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3

V V t

V V

F p V R R H R

R N

π
β π β β

π
β β µ

 
= − ⋅ − + − + 


+ − + +

                  (16) 

2 sin
SL SL SL SL

F RH Nσ π β µ= ⋅ +                      (17) 

2 sin
SV SV t SV SV

F A RH Nσ π β µ = ⋅ − +               (18) 

( )2
2 1 cos

LV LV LV LV
F R Nσ π β µ= ⋅ − +                          (19) 

2 sin
SLV SLV SLV

F k R Nπ β µ= ⋅ +                          (20) 

Consequently, putting Eqs. (15-20) into Eq. (2), one has 

( ) ( )

( ) ( ) ( )
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+ + + + + +

 (21) 

 

3. Derivation of contact angle 

The total potential energy Ω of the system presented in Section 2 is defined by the equation 

( )L L V V LV LV SL SL SV SV SLV SLV
F N N N N N Nµ µ µ µ µ µΩ = − + + + + +  (22) 

Using the free energy Eq. (21) and potential energy Eq. (22), the potential energyΩ can be 

rewritten as 

( ) ( )

( ) ( ) ( )

( )

3 3 2 2

23 2

2
sin sin sin

3

1 cos 2 cos 2 1 cos
3

2 sin 2 sin

L V

V t LV

SL SV SV t

p p R R H R

R p V R

RH A k R

π
β π β β

π
β β σ π β

σ σ π β σ π β


Ω = − − ⋅ + −


+ − + − ⋅ + ⋅ −

+ − ⋅ + ⋅ + ⋅

 (23) 

Minimizing the potential energyΩ with respect to the radius R , namely 

0
d

dR

Ω 
=  

 (24) 

Due to the surface tensions
SL

σ and
SV

σ independent of the dividing surface [12], one obtains 



Zhou et al                                    Journal for Foundations and Applications of Physics, vol. 5, No. 1 (2018) 

27 
 

0

0

SL

SV

d

dR

d

dR

σ

σ

 
= 

 

  =  

 (25) 

By utilizing equations (23-25), the following expression is obtained 

( )

( ) 0

LV LVL
L V LV LV

SL SLV
SL SV SLV

d dAdV
p p A

dR dR dR

dA dLdk
L k

dR dR dR

σ
σ

σ σ

    
− − ⋅ + ⋅ + ⋅         

    
+ − ⋅ + ⋅ + ⋅ =        

             (26) 

From geometry, the following relations can be easily obtained 

sin
L

R R constβ= =  (27) 

cosH R OA constβ− = =  (28) 

2

π
β θ= −  (29) 

Taking the derivation of Eqs. (27-28) with respect to the radius R , one finds that 

sin

cos

d

dR R

β β

β
= −  (30) 

1

cos

dH

dR β
=  (31) 

0L
dR

dR
=  (32) 

Similarly, we take the derivation of Eqs. (9, 11, 12, 14) with respect to the radius R and apply 

Eqs. (30-31), leading to 

( )22 1 cosLdV
R

dR
π β

 
= −  

 (33) 

( )
2sin

4 1 cos 2
cos

LV
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R R
dR

β
π β π
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= − − ⋅ 

 
 (34) 

2 sin

cos

SL
dA R

dR

π β

β

 
= 

 
 (35) 

0SLV
dL

dR

 
= 

 
 (36) 

The Laplace equation [16] of the spherical drop in vapor is formulated as 

2 LV LV
L V

d
p p

R dR

σ σ 
− = +   

 (37) 

Now putting Eqs. (33-37) into Eq. (26), we find 

cos
sin SL SV

LV LV

dk

dR

σ σ β
β

σ σ

−  
= + ⋅   

 (38)

 

 

According to Eq. (29), Eq. (38) can be rewritten as 
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sin
cos SV SL

LV LV

dk

dR

σ σ θ
θ

σ σ

−  
= − ⋅   

 (39) 

If the familiar Young equation (1) is substituted into Eq. (39), we arrive at a new generalized 

Young equation that describes the contact angle of spherical drops inside a smooth and 

homogeneous cylindrical capillary with hemisphere head 

sin
cos cos Y

LV

dk

dR

θ
θ θ

σ

 
= − ⋅   

 (40) 

In addition, if the effects of the line tension are neglected, Eq. (39) is simplified to the classical 

Young equation (1). 

 

4. Conclusion 

In this paper, using Gibbs’s method of dividing surface and Rusanov’s concept of dividing 

line, the wettability of a spherical droplet in a smooth and homogeneous cylindrical capillary with 

hemisphere head is studied thermodynamically. Considering the effects of the line tension, the 

contact angle of spherical droplets in a smooth and homogeneous cylindrical capillary with 

hemisphere head was successfully derived. When ignoring the effects of the line tension, this 

generalized Young equation reduces to the classical Young equation. 
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