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Abstract 

Interaction of glutamic acid (Glu) was studied with double-stranded (ds) calf thymus 

DNA (CT-DNA) by cyclic voltammetry (CV) then obtained results were further correlated by 

ultraviolet-visible (UV-Vis) and fluorescence spectroscopies. Calculated binding constant 

from all techniques was very close to each other and it is around 3.54× 10
3 

M L
-1

. Further 

binding sites were also calculated and it is near to 1, which indicates appropriate binding of 

Glu with CT-DNA. The result shows Glu binds in groove modes of DNA. Further binding 

free energy (∆G) of the complex was also calculated and it is -4.76 kCal M
-1

. In our work a 

correlative intractability pattern for Glu with DNA has been identified.  
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1. Introduction 

Near to 500 types of amino acids (AA) exist in which 20, α-amino acids, are used as building 

blocks of protein [1]. Recent studies have witnessed that AA are not only used for cell signaling 

purpose for molecule but also used as a regulator for gene expression [2]. Glutamic Acids 

usually exist as glutamate because the conditions in human’s body favors to loss of a hydrogen 

atom from glutamic acid [3, 4]. Glu is a non-essential AA [4]. Most oftenly L-Glu is applied for 

flavor enhancer in fruits, seafood, meats, poultry, soups and snacks [5, 6, 7, 8]. Glu also useful as 

stability enhancer of several proteins [9, 10] and it protects intestinal wall to gastric attack [11], 
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gut function, active brain nuclei related to appetite, memory, thermoregulation [12]. It is also 

used in nutrition diet in patient of poor nutrition [13]. DNA is building block of cell and it holds 

all genetic information that is obligatory for cellular functions [14, 15]. Thus interaction 

inbetween DNA and other molecules have a unique consequences as it is associated to the 

replication, mutation and transcription [16]. More often three types of binding modes are 

reported for interaction of AA to DNA, these are: electrostatic interaction, intercalation of 

aromatic heterocyclic groups between the base pairs and Van der Waals interaction [17,18,19]. 

Interaction between DNA and Cu and Ru complexes of Glu as ligand has been studied and 

disclosed that the formed complexes can be lead analogues for the development of an effective 

anticancer drug [20].  

        In the present study, the interaction of Glu and DNA was studied by CV and obtained 

results were correlated with UV-Vis and fluorescence spectroscopies. The binding constant, 

binding sites and binding free energy of Glu-DNA complex were evaluated.  

2. Experimental 

2.1.  Chemicals and reagents 

         Calf thymus DNA (CT-DNA) and L-Glutamic acid (Glu) was purchased from Sigma, India 

and used without further purification. An appropriate amount of the DNA and deionized water 

was used to prepare stock solution of DNA further it was stored overnight at 4 
°
C temprature. 

The concentrations of DNA solutions were determined by using UV-Vis spectrophotometry with 

the average extinction coefficient value of 6600 M
-1

 cm
-1

 for a single nucleotide at 260 nm [21]. 

L-Glutamic acid of 0.04 ML
-1

 solution was prepared by using deionize water and stored at 4
 0

C.  

Tris-buffer solution (0.04 ML
-1

)
 
of pH 7.0 were prepared by using Systronics µpH 361 digital 

analyzer. All other reagents and chemicals were used of analytical grade and prepared by using 

deionized water. All the experiments were carried out at room temperature.  

 

2.2.  Cyclic Voltammetric study 

         The cyclic voltammograms were recorded in Metrohm Autolab B.V. PGSTAT128N 

computer controlled with software NOVA version 1.10.1.9 assembled with conventional three 

electrode system having bare and modified GCE as working electrode, Ag/AgCl/KCl as 

reference electrode and a platinum wire as counter electrode. The voltammetric measurement of 

Glu was carried out with 10 mL of 0.02 M tris-buffer solution (pH 7.0), KCl as supporting 

electrolyte using clean and dried voltammetric cell. The accumulation potential of -0.2 V vs. 

Ag/AgCl was applied to a modified electrode for 60 s by keeping modulation amplitude 

constant. Following the preconcentration period, the voltammograms were recorded in potential 

range of -0.5 V to -1.5 V with Scan rate: 50 mVs-1, Modulation amplitude: 25mV, Modulation 

time: 0.01 s, Step potential: -5mV. 
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2.3.  Fabrication of modified GCE 

      Prior to the modification of bare glassy carbon electrode (b-GCE), the surface of b-GCE 

was mechanically polished by alumina powder (Al2O3 0.05 µm) and cleaned by sonication in 1:1 

HCl and HNO3 (0.1 M) using Frontline sonicater. The multi-walled carbon nanotubes 

(MWCNT) were dispersed in 10 ml ethanol and sonicated for 20 min to form a homogeneous 

suspension. Then 7 µL of this suspension was casted over the polished GCE surface and the 

solvent was allowed to evaporate at room temperature. The fabricated MWCNT-GCE was 

electrochemically activated by 10times cyclic voltammetric sweeps in the potential range of -

1.0V to +2.0V in 0.1 M nitric acid solution at the scan rate of 50 mVs
-1

. 

       The surface features of b-GCE and MWCNT-GCE were characterized by cyclic 

voltammetry (CV). Cyclic voltammograms were recorded for 1.0 mM K3[Fe(CN)6] probe in 0.1 

M KCl solution at bare GCE, MWCNT-GCE. The surface area of the electrodes were calculated 

using Randles-Sevick equation [22, 23, 24] by performing cyclic potential sweeps at different 

scan rates: 

��� = 0.4463 
�
�

��
�/�
��/������/����/�               (1) 

Where, Ipa is Anodic peak current, n is the number of electrons transferred, A0 is surface area of 

the electrode (cm
2
), D0 is diffusion coefficient, C is concentration of Fe(CN)6

3-/4-
 and ʋ is the 

scan rate, R is molar gas constant (8.314 JK
-1

mol
-1

) and F is Faraday’s constant (96480 C mol
-1

). 

For 1.0 mM K3[Fe(CN)6] in 0.1 M KCl at Temperature, T = 298 K, n = 1 and D0 = 7.6 × 10
-6

 

cm
2
s

-1
. The surface area is calculated from the slope of the plot of Ipa versus ʋ

1/2
, and was 

calculated to be 0.0174 cm
2
, 0.186 cm

2
, for bare GCE and MWCNT-GCE respectively. This 

indicates the modification of electrode surface which causes easier and faster electron transfer. 

 

2.4.  UV-Visible Spectrophotometry 

         UV-Vis spectroscopy is one of the most utilized technique to detect the binding strength 

and to predict the mode of binding exists in a complex
 
[25]. If a small molecule interacts with 

CT-DNA, which alters the absorbance and the position of the signal. UV-Vis spectra for Glu 

were recorded by Systronics Double Beam UV-Vis spectrophotometer, with the constant 

concentration of Glu (1×10
-4 

M) and the addition of variable concentration of CT-DNA (from 

1×10
-5

 M to 1×10
-4 

M).  

 

2.5. Fluorescence emission spectroscopy 

          The fluorescence spectroscopic techniques also play an important role to study the 

interaction of molecules. The fluorescence emission measurements were carried out on RF-

5301PC Spectrofluorophotometer. The emission spectra in the fixed concentration of Glu (30 

µM L
-1

) in tris-buffer solution (0.04 ML
-1

) and by adding aliquots of variable concentration of 
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CT-DNA was recorded in the range of 270 to 400 nm at an excitation wavelength of 266 nm. 

The quenched fluorescence intensity was represented as F0/F, where F and F0 were fluorescence 

intensities of the system with and without DNA, respectively. 

3. Result and discussion 

3.1.  Voltammetric studies of Glu-DNA interaction 

 

Fig. 1: Cyclic Voltammogram of 1.0 × 10
-4

 mol L
-1

 Glu at bare GCE and MWCNT-GCE in scan 

rate 50 mVs
-1

. 

         The cyclic voltammograms of Glu in tris-buffer solution (pH 7.0) were recorded at 

MWCNT-GCE in the absence and presence of DNA. The cyclic voltammogram of Glu shows 

single well defined, irreversible, reduction peak at cathodic sweep in the potential range from -

0.5 to -1.4 V (Fig. 1). The irreversible cathodic peak at -0.638 V is related to the reduction of the 

NH2 group. Fig. 1 shows the comparison of cyclic voltammogram of Glu on MWCNT-GCE and 

b-GCE. MWCNT-GCE shows better peak response in terms of peak intensity due to high 

electron transfer rate and better electroactive surface area. To evaluate the interaction of Glu with 

DNA, cyclic voltammograms were recorded. The variation in peak potential and peak current 

with the addition of DNA in Glu was exploited for the determination of binding parameters. 
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With the addition of DNA in Glu and tris-buffer(pH 7.0) solution, the reduction peak current 

decreases without shift in potential which is clearly indicate the mode of interaction is groove 

between Glu and DNA [26, 27]. The decay in peak current (Ip) of the drug by increasing the 

amounts of DNA can be used for the determination of binding constant.  

 

Fig. 2: Cyclic voltammogram of Glu in tris-buffer (pH 7.0) in  absence on MWCNT-GCE (a) at 

the scan rate 50 mVs
-1

 and (b-f) with increasing concentration of DNA (0.1×10
-5

 mol L
-1 

,  

0.2×10
-5

 mol L
-1

,  0.3 ×10
-5

 mol L
-1

, 0.4×10
-5

 mol L
-1

,  0.5×10
-5

 mol L
-1

) 

 

The binding behavior of Glu with DNA was measured by recording the cyclic voltammograms 

of Glu with the standard addition of DNA. Fig. 2 shows a typical cyclic voltammograms of Glu-

DNA at MWCNT-GCE. The binding constant is quantified by the following Bard’s equation 

[28]: 

��� �
�[� !] = ���# + ���

%
(%'(%)

              (2) 
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where, K is the binding constant, I0 and I are the peak currents of the drug in the absence and 

presence of DNA, respectively. The plot of log (1/[DNA]) vs. log (I/(I0 -I)) becomes linear with 

the intercept (log K). The binding constant, K is obtained from the intercept (log K) of the plot 

(Fig. 3). The binding constant (K) value 3.95×10
3
 M

-1
 was obtained. 

 

Fig. 3: Linear plot of log I/(I0-I) Vs. log 1/[DNA]. 

3.2. UV-Vis spectroscopy  

          The interaction of Glu with CT-DNA was characterized by monitoring a titration using 

UV-Vis absorption in the tris-buffer solution (pH 7.0). The absorption spectra were recorded for 

the fixed concentration of Glu and the interaction was studied with varying concentration of CT-

DNA. Glu shows two absorption peaks at 219 nm and 266 nm. The absorption peak at 266 nm 

was decreases with the addition of DNA as shown in Fig. 4.  
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Fig.4: The UV spectra of Glu and Glu-DNA complex in tris-buffer solution (pH 7.0). From 1 to 

10: (1) GLU (1.0×10
-4 

mol L
-1

)in absence of DNA and (2-10) with increasing concentration of 

DNA: (0.1×10
-5 

mol L
-1 

,  0.2×10
-5 

mol L
-1

,  0.3×10
-5 

mol L
-1

, 0.4×10
-5 

mol L
-1

,  0.5×10
-5 

mol L
-1

,  

0.6×10
-5 

mol L
-1

,  0.7×10
-5 

mol L
-1

,  0.8×10
-5 

mol L
-1

, 0.9×10
-5 

mol L
-1

); Inset: The linear plot of 

A0/(A-A0) vs 1/[DNA]. 

 

The λmax was obtained constant and absorption intensity was changed due to changes in 

conformation and structure of Glu and DNA via their interaction. The hypochromic incorporated 

with bathochromic shift indicates the existence of intercalative binding modes [26]. But the 

absorption results of interaction between Glu-DNA shows hypochromic shift with minor change 

in bathochromic shift probably indicates the existence of groove binding mode of interaction 

[29]. The intrinsic binding constant, Kb, was determined from equation [28]:  

!'
!(!'

= ℇ+
ℇ,-+(ℇ+

+ ℇ+
ℇ,-+(ℇ+

	× 	 �
01[� !]

              (3) 

Where, A0 and A are the absorbance of Glu and its complex with DNA, respectively. ƐG and ƐH-G 

are the absorption coefficients of Glu and Glu-DNA complex, respectively and Kb is the binding 

constant. The value of Kb was calculated from the intercept of linear plot (A0/A-A0) vs. 1/[DNA] 
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(Fig. 4, inset). The value of the binding constant (Kb) for Glu-DNA complex was obtained to be 

3.39×10
3
 M

-1
. 

3.3.  Fluorescence spectroscopy 

 

 

Fig. 5: The Fluorescence spectra of Glu-DNA in tris-buffer (pH 7.0) from 1 to 5  : (1) Glu 

(1.0×10
-4

 mol L
-1

)
 
 in absence of DNA and (2-5 ) with increasing concentration of DNA: 

(0.1×10
-5

 mol L
-1

, 0.2×10
-5

 mol L
-1

, 0.3×10
-5

 mol L
-1

, 0.4×10
-5

 mol L
-1

, 0.5×10
-5

 mol L
-1

); Inset: 

Linear plot of F0/F vs. concentration of DNA and the linear plot of log [(F0 – F)/F] vs log CDNA. 

 

Fluorescence emission spectroscopy also gives the information for binding mode and sites of 

interactions between Glu and CT-DNA. Quenching of fluorescence provided valuable 

information about the interaction of quencher and fluorophore. The Glu solution in tris-buffer 

(pH 7.0) gives intrinsic fluorescence emission spectra when excited at 266 nm with emission 

maxima at wavelength 331 nm (Fig. 5). The intensity of fluorescence spectra of 1.0×10
-4

 mol L
-1

 

Glu was decreases successively with addition of CT-DNA. The decline in fluorescence intensity 

indicates the quenching of Glu during binding with DNA. Since the spectra shows that 

quenching of Glu with DNA shifts the intensity but shifts in the wavelength (λ) was not 
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observed. This result suggests that Glu interacts with DNA through groove binding. The Stern–

Volmer equation (Eq. 4) was used to study quenching process and to calculate quenching 

constant [27]: 
�'
� = 1 + (#� + #3)[4] + #3#�[4]

�                
(4) 

where, KD and KS are the dynamic and static quenching constants, respectively. F0 and F are the 

fluorescence intensities in the absence and presence of quencher respectively. [Q] is the molar 

concentration of quencher. In the case of combined static and dynamic quenching, plot between 

F0 / F vs. [DNA] should be non-linear. But Fig. 5 inset clearly shows a linear plot with R
2
 = 

0.997. Thus the quenching mechanism was static or dynamic in nature. The nature of quenching, 

static or dynamic can be determined by using linear classical Stern-Volmer equation [28]. 

�'
� = 1 + 56	Ԏ�[4] = 1 + #38[4]                (5) 

where, kq and KSV are the bimolecular quenching constant and Stern-Volmer quenching constant, 

respectively. The value of KSV and kq calculated from the linear Stern-Volmer plot between F0/F 

versus concentration of CT-DNA as shown in Fig 5, inset. The value of KSV was calculated from 

the slope of the curve, 6.662×10
3
 M

-1
 L s

-1
. The value of KSV was in the range of typical groove 

binders [30]. After putting the value of KSV and fluorescence lifetime (Ԏ 0) of biological 

macromolecules as 10
-8

 s in equation 5, it gives the value of kq, 6.662×10
11

 M
-1

 L s
-1

. It is larger 

than the limiting diffusion rate constant of bimolecule (2.0×10
10

 M
-1

 L s
-1

) indicates the static 

quenching occurred in Glu quenching by DNA. The binding constant ‘Kb’ and the binding sites 

‘n’, calculated by using the following equation [31]: 

��� �'(�� = log#< + ����[�=�]                (6) 

The intercept of the plot of log (F0 – F) /F vs. log [DNA] gives the value of Kb and the n were 

evaluated from the slope value (Fig. 5, inset). The calculated binding sites were 0.939 and 

binding constant was 3.655×10
3
 M

-1
. These values are close to the calculated values of binding 

parameters from UV-Vis spectroscopy. The binding Gibb’s free energy (∆Gb*) for Glu-DNA 

was calculated from the following relation and it is obtained as -4.86 kCal M
-1

 [32]: 

∆Gb* = -RT ln Kb 
                       

(7) 

where, R represents the gas constant and T for absolute room temperature.   
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Table 1: The calculated value of binding constants obtained from voltametric and 

spectroscopic techniques. 

Techniques Cyclic Voltammetry UV-Vis Spectroscopy Fluorescence 

Spectroscopy 

Binding Constant (Kb) 3.95×10
3
 M

-1
 3.39×10

3
 M

-1
 3.65×10

3
 M

-1
 

4. Conclusion  

            Interaction of Glu with CT-DNA was studied by performing cyclic voltammetric and the 

results obtained from the detailed experiment have been further correlated with UV-Vis and 

fluorescence spectroscopy to identify and explore its interaction pattern. Obtained results from 

different experimental techniques are mentioned in table 1. All results prove that the groove 

mode of interaction exists between Glu and DNA complex. The combination of the cyclic 

Voltametric and spectroscopic methods shows potential importance in understanding the 

mechanism and mode of action of this important class of amino acid with DNA which can 

contribute to the further exploitation of the interaction for understanding the basics to use the 

pattern in different field of DNA study, besides these, can be used for the generation of drug 

molecule having prior mechanism of action in DNA, in different aspect of disease related to 

DNA molecule interaction or DNA mutation. 
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