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Abstract

The idea of exp(— ¢(&))-expansion method is used to construct new profuse exact traveling
wave solutions of Tzitzeica type nonlinear evolution equations. By means of this method,
three types of exact traveling wave solutions for each Tzitzeica type equations are obtained,
including the hyperbolic functions and trigonometric functions. The obtained results show that
exp(— ¢(&))-expansion method is very powerful, effective and convenient mathematical tool
for non-linear evolution equations in science and engineering.
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1. Introduction

Largest part of the phenomena in real world can be demonstrated using non-linear evolution
equations (NLEEs). Exact solutions of NLEEs plays an vital role, when we want to understand the
physical mechanism of the phenomena such as the wave phenomena observed in fluid dynamics [7,8],
plasma and elastic media [9,10] and optical fibers [11,12] etc. Recently, a number of prominent
mathematicians and physicists have devoted considerable efforts in this interesting area of research.
For instance the inverse scattering transform [1], the complex hyperbolic function method [2, 3], the
rank analysis method [4], the Ansatz method [5, 6], the (G'/ G)—expansion method [13-19], the mod-
ified simple equation method [20], the exp-functions method[21, 39], the sine-cosine method [22], the
Jacobi elliptic function expansion method [23, 24], the F-expansion method [25, 26], the Backlund
transformation method [27], the Darboux transformation method [28], the homogeneous balance
method [29-31], the Adomian decomposition method [32, 33], the auxiliary equation method[34, 35],
the exp(— (p(n)) -expansion method [36] and so on.

In this study, the objective is to add new traveling wave solutions of Tzitzeica equations in the
literature. To do that we applied the exp(— ¢(§)) -expansion method in Tzitzeica equations namely
Dodd-Bullough-Mikhailov equation and Tzitzeica-Dodd-Bullough [37-38] which play a significant
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role in the scientific applications such as solid state physics, nonlinear optics , quantum field theory.
The paper is arranged as follows. In section 2, we describe briefly the exp(— ¢(&))-expansion method.

In section 3, we apply the method to the Tzitzeica type equations. Lastly in section 4, some
conclusions are given.

2. The exp(— ¢(£))-expansion method
In the following, we will summarize the main steps of exp(— (p(é‘))—expansion method. Consider a
nonlinear equation, say in two independent variables x and ¢ is given by

Fuu,,u U, U U e =0 (1)
where u is an unknown function depending on x, # and P is a polynomial in u(x,t) and its partial

derivatives, in which the highest order derivatives and nonlinear terms are involved. The existing steps
of method are as follows:

Step 1: Combining the independent variable x and ¢ into one variable &=kx+ @t, such that
u(x,1)=V (&), & = kx + ar permits us reducing Eq.(1) to an ODE for u = V(&)

PVV' V7 . )=0 (2)
Step 2: Suppose that the solution of ODE (2) can be expressed by a polynomial in exp(— (p(é‘)) as
follows

i

V()= ﬁ(AiExp(— PE)) & =hor+ (3)
where @'(&)satisfy the ODE in the form:
(&) =exp(=p(&))+ uexp(pl(£))+ 2 )

Then the solutions of ODE (4) are
When 2> —4u>0,u+0,
2

— (2 = 4u) tanh( %

S rc)-a

#(&) = In( ) 5
2u
When 2> —4u>0,u=0,
A
=1
#(e) n(exp(ﬂ,(§+ E)) —lj ©
When 2> —4u=0,u#0,A#0,
2UE+C)+2)
:1 —
PRNEIEEEY
When 2> —4u=0,u4=0,1=0,
(&) =In(A(& + C)) (8)

When 4* —4u <0,
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NCTEYS) tan{\' (4“2‘1 ) <<§+C)]—z

¢(&)=1In 2

)

Ao, 4i=01...... ,m and 4 are constants to be determined later, A, # 0, the positive integer m can

be determined by considering the homogeneous balance between the highest order derivatives and the
nonlinear terms appearing in ODE(3).

Step 3: By substituting Eq.(3) into Eq. (2) and using the ODE(4), collecting all terms with the same
order exp(—¢@(&)) together, the left hand side of Eq.(2) is convert into another polynomial in

exp(—¢(¢£)) .Equating each coefficients of this polynomial to zero, yields a set of algebraic equations
forA,w,A;i=0,l....... ,m and 4.

Step 4: The constants A,,@,A;i=0,l....... ,m and 4 can be found by solving the algebraic equations
obtained in step 3. Since the general solutions of ODE (4) have been well known for us, then
substituting A, @;i=0,1....... ,m with the general solutions of Eq. (4) into the Eq. (3), we have more
traveling wave solutions of nonlinear evolution Eq. (1).

3. Application
In this section, we are going to demonstrate the exp(—¢(&)) -expansion method on three of well-

known nonlinear evolution equations, namely, the Tzitzeica equation, Dodd-Bullough-Mikhailov
(DBM) equation and Tzitzeica-Dodd-Bullough (TDB) equation. These nonlinear equations belong to a

family of nonlinear equations which involve the exponential term e, where ce R .

3.1 Tzitzeica equation
Let us consider the Tzitzeica equation [37]:

u,—u_ —e" +e" =0 (10)
This equation plays a significant role in many scientific applications such as solid state physics,
nonlinear optics and the quantum field theory. By the transformation u =1In(v) ;
Eq. (10) is changing into the following form:
w, =V =+ =y +1=0 (11)
We would like to use the proposed method to obtain some new exact solutions of the Eq. (11), and
therefore by using the transformation u# =In(v), the general soluton of Eq.(10) can be obtained easily.
To obtain solution of Eq.(11), assume that
v=V(&),&=kx+ wt (12)
where k,@ are constants. Substitute Eq.(12) into Eq.(11) we get nonlinear ordinary differential
equation
(@ -2V + (k2 -V -V +1=0 (13)
where prime denotes the differential with respect to &.

Balancing the highest order derivative with the nonlinear term of the highest order, we obtain m =2.
Therefore, the solution takes the following form:

V=4, + A (Exp(— (&) + A, (Exp(- p(£)))". 4, 20 (14)
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where Aj,A and A, are constants, to be determined later. Substituting Eq.(14) along with Eq.(4) into
Eq.(13) and collecting all terms with the same order of Exp(— (p(f)), together the left-hand sides of
Eq.(13) are converted into a polynomial in Exp(— (p(f)) Setting each coefficient of each polynomial to
zero, we derive a set of algebraic equations for k,w, A, A, and A,, as follows:

(Exp(- &))" 20°A7 - A7 —2k7 A7 =0,

(Exp(—= (&) : —2k*AZA—4k*A A, +40° A A, —3A A2 +20° A1 =0,
(Exp(=(&)))': —3A2A, +6w* A A, +50* A A, A—k* Al —5k> A A, A—3A,A2 —6k>A A, +@* A2 =0,
(Exp(=@(&)): 20°A A —k*APA+20° A A+ 0’ A AL k> Al + 0* A? =207 A2 A —3A°

6A,A A, —2k> A At —2k* A A, + 2k AT Au — k> A ALA —10k> A A A +100° A,A,A =0,
(Exp(=p(E))): —3k*AAA—207 A2 1> —3ALA, +30° AJA A —4k* A AP + KA A A+ 4w A AL
— W AAAU-3A A +2K° A + 8w Ay A i —8k> A A, =0,
(Exp(— (&) : 2k A A u° — @ AT Au+200° Ay A i —3A A, — 6k* A A A — k> A A
20 A A + @0 A AL + KA A+ 60° A, A A — 2k Ay A =0,
(Exp(= (&) 1-@®APp + K AL +20° A A — A — K2 AyA A~
2k*A AU + @ AJA AL =0

Solving this over-determined system with the assist of commercial computational software Maple, we
have the following results.

2+ 64 6 +\/[4,uk2—3—k2/12j

et o = T T T T T e

Now substituting the values of A,, A, A, and @ in the Eq.(14), using values of ¢(&) for each

conditions and also using transformation u(x,t)=1n(V) the general solution of Eq.(10) can be obtained
easily.
When A —4u>0,u+0,

2u+ 1 64 2
a2 au-1
U U

2

VA —4u tanh[/12_4'u(§+C)J+/l

2

u(x,t)=1In (15)

6 « 2u
du— 1 2

A —4u tanh{“ﬂz_éw (E+ C)j +A

When A —4u>0,u=0,
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| 2ut A 64 A __ 6 A 2
u(x’t)_h{ bu— 2 4#—/12X[exp(/1(§+c))—1J 4;,_,12X[exp(,1(§+c))—1}} "

When A" —4u<0,

2u+Xl 64 2u

- X
du-1 Adu-x 41— 22
\4u—A tan 4'uz/1(§+C) +A

u(x,t)=1In 5 (17)
6 « 2u
4u— 1 41— 22
Nau-r tan['uzl(§+ C)|-1
2 _a_p292
where /f:kxi\/[4ﬂk 3 zk A J.l
4u—A
3.2 Dodd-Bullough-Mikhailov equation
Now consider the Dodd-Bullough-Mikhailov equation given by [21-38]:
u,+e' +e =0 (18)
By the transformation u =In(v) ; Eq. (18) is changing into the following form:
w, vy, +v +1=0 (19)
Therefore assume that
v=V(&),E=kx+at (20)

where k,@ are constants. Substitute Eq.(20) into Eq.(19) we get nonlinear ordinary differential
equation

kaVV’ —ka(V') +V3+1=0 (21)
where prime denotes the differential with respect to &.

Balancing the highest order derivative with the nonlinear term of the highest order, we obtain m =2.
Therefore, the solution of Eq.(21) takes the following form:

V = Ay + A (Exp(- (&) + A, (Exp(- ()", A, %0 (22)

where A;,A and A, are constants, to be determined later. Substituting Eq.(22) along with Eq.(4) into
Eq.(21) and collecting all terms with the same order of Exp(—@(&)), together the left-hand sides of
Eq.(21) are converted into a polynomial in Exp(—@(&)).

12



Md. Rafiqul Islam et al Journal for Foundations and Applications of Physics, vol. 4, No. 1 (2017)

Setting each coefficient of each polynomial to zero, we derive a set of algebraic equations for
k,w,A,, A, and A,, as follows:

(Exp(-@(&)))f: A +2ekA; =0,

Exp(- (&) : 4akA A, +20k>A2A+3A,A2 =0,

(Exp(
(Exp(— (&))" : 6kan A, +3A,A2 + kaA? +3A%A, +5kaA, A,A =0,
2 2 1 1 1772

(Exp(= (&) : —2kaA? Au+10kar, A, A+ 2kaA, A, 1+ k@A’ A + 2k oA, A, 1

2 alAO 2 1472 1 1472

+2k@A A, +6A,A A, + A’ =0,

(Exp(=@(&))): —kaA A, A+ dkad, A, 2 - 2ka@A2 i +3A,A° +8kaA, A i +3kawA A L+3A2A, =0,

1472 0472 2 AO 1 0472 (aAO 1 AO 2
(Exp(= (&))" : 6kwA, A, Au + k@A AA — 2k A, u* — k@A? A+ 2kaA At +3A2A, =0

2 1 1

(Exp(= (&))" : 1+ A2 + kA A A — kA2 1 + 2kA A, pi* =0

Exp

Solving this over-determined system with the assist of commercial computational software Maple, we
have the following results.

2pi+ A 64 6 3

o 20 A = :—7a):_ 5
du-2""" Au-2 4 4p— 1 k(4 - 2)
Now substituting the values of Aj, A, A, and @ in the Eq.(22), using values of @(&) for each

Cluster-1: A, =

conditions and also using transformation u(x,t) = ln(V), we obtain the required solutions.
When A —4u>0,u+0,

2u+ 1 64 2

- X
Au—-1 4u-x [ _
VA —4u tanh /124'u(§+C) +A

u(x,t)=1In , (23)
6 « 2u
T 4
NA —du tanh[/124’u(cf+ C)]+/1
where & = kx — 3 t _
klau-2)
When A —4u>0,u=0,
6 1 ’
u(x’t)_ln{_l_(exp(l(&C))—lj_6(e><p(ﬂ(§+C))—lj } e
3
where & =kx+— /12
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When A* —4u<0,

2wtk 64 2u
du—-X A4u-x (41— 2
J4u—A tan 4’uz/1(§+C) -2

2

u(x,t)=1In (25)

6 2u

X
du— 1 _
Vau—-x tan[4'uz/1(cf+ C)]—/i

3
where & = kx — t.
g k(dy - 2)
+.4- 2 + /2 ] e
Cluster2: A, =—IEVICUFA) -y AUEN=3) ) 3UENS) ) SUENZI)
24 =A) =4 dpa—2 2k(ap—72)
Now substituting the values of Ay, A, A, and @ in the Eq.(22), using values of ¢(&) for each

conditions and also using transformation u(x,t)=1n(V), we obtain the required solutions.
When " —4u>0,u+0,

_(1i\/—_3)(2ﬂ+/12)+/1(14_r\/—_3)x 24
204u— 1 du— X 2 _
(=2 # A —4u tanh[lzé‘ﬂ(cf+C)]+/1
u(x,t)=In ) (26)
_30£4-3) 2u
4p— 1 2
s VA —4u tanh(/124’u(§+C)J+/l
» 31£4-3) —
where cf—kx ml .
When 2> —4u>0,u=0,
C1:4=3 1£4-3 1 ’
u(X,t)—ln{ 5 +[exp(/1(cf+C))—1]+6(exp(/l(§+C))—l] ] (27)
where §=kx+Mt.

2k1?
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When A* —4u<0,

_(EV-3)Qu+ X)) AMEV-3) 24
204u—-1) Au— X1 41— 22
“ “ Nau—r tan(4‘u2/1(§+ C)J—/l
u(x,t)=1In , (28)
_3(1iJ—_3)X 2u
du— 1

Vau—-x tan[“éwz_f(f+C)]—/1
C 3fi+vD3) _
where §—kx—mt .

3.3 Tzitzeica-Dodd-Bullough (TDB) equation
Finally, we would like to use the method to find out new solutions of Tzitzeica-Dodd-Bullough
equation given by [39]:

u,—e " —e" =0 (29)
which plays a significant role in many scientific applications such as solid state physics, nonlinear

optics and the quantum field theory. By the transformation v(x,7) =e™; Eq. (29) is changing into the
following form:

—w, +vy, =1 =1 =0 (30)
Therefore, introducing a complex variable & defined as
v=V(&),E =k + at 3D

where k,@ are constants. Substitute Eq.(31) into Eq.(30) we get nonlinear ordinary differential
equation

—kaoVV +ka(V') -V -V*=0 (32)
where prime denotes the differential with respect to &.

Balancing the highest order derivative with the nonlinear term of the highest order, we obtain m =1.
Therefore, the solution of the Eq.(32) takes the following form:

V=4, +A(Exp(-9l&)). A #0 (33)
where Ajand A, are constants, to be determined later. Substituting Eq.(33) along with Eq.(4) into
Eq.(32) and collecting all terms with the same order of Exp(— (p(f)), together the left-hand sides of
Eq.(32) are converted into a polynomial in Exp(— (p(f)) Setting each coefficient of each polynomial to
zero, we derive a set of algebraic equations for k, @, A, and A, as follows:

(Exp(-@(E))': —kan - Al =0,
(Exp(-p(§)))': —4A,A — 2k A, - A) — kat( A =0,
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(Exp(- (&))" : —34,A7 —6A7A? - 3kart, AL =0,
(Exp(=p(S)) = — 2k Au—3A0A — kah AL —4AJA, + kaA! A =0
(Exp(-@(E))): - A) — ke, A Ap+ ket u” = A7 =0

Solving this over-determined system with the assist of software Maple, we have the following results.

1 1 1
Cluster-1: A, =+— = .
2\ A2 —4u 2’ 4# 4# 2 )

Now substituting the values of A,, A, and @ in the Eq.(33), using values of @(&) for each conditions

and also using transformation u(x, t) = —ln(V) the general solution of Eq.(29) can be obtained easily.
When I —4u>0,u+0,

11 } 2u
u(x,t)=—In| £= > - (34)
P 4ﬂ (”ﬂz_4ﬂ(§+c)J+z
2

-4 ,u tanh

1

where & = kx+—(—)t.
k\du— A

When 2> —4u>0,u=0,

1 1 1
u(x,t):—ln{iﬂ—aiexp(ﬁ(é:_i_c))_l} (35)

where & = kx—%t

When A —4u<0,

u(x,t)=—In| * (36)

where & = kx + 1.
g kldu— 2

4. Conclusion

In this article, the exp(— q)(f)) -expansion method has been successfully implemented to find new
traveling wave solutions of Tzitzeica type equations. As a result, we obtained plentiful new exact
solutions including trigonometric function, hyperbolic function and rational solutions. We hope that
they will be useful for further studies in applied sciences. It is shown that the performance of this
method is productive, effective and well-built mathematical tool for solving nonlinear evolution
equations.
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