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Abstract 
By methods of thermodynamics, wetting of cylindrical droplet on heterogeneous and 

smooth but chemically non-deformable cylindrical outer surfaces is investigated in this 

paper. For the three-phase system, we suppose the solid substrate is composed of two 

types of materials. Using Gibbs's method of dividing surface, the system can be separated 

into six segments. On the assumption that the temperature and chemical potential are 

constant, a generalized Cassie-Baxter equation is derived taking the line tension effects 

into consideration. This generalized Cassie-Baxter equation is discussed based on some 

assumptions. 
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1.  Introduction 

Wetting phenomena of a droplet on solid substrate is topic of interest in various fields. Many 

researchers studied the wetting phenomena over the years [1-9]. Interfacial phenomena in solid-

liquid-vapor systems are often depicted by the contact angles. For a drop resting on a plane smooth 

solid surface, Young described the equilibrium contact angle 
Y

θ  by the well-know equation [10],  

 cos SG SL

Y

LG

σ σ
θ

σ

−
=                               (1) 

where 
SG

σ , 
SL

σ , 
LG

σ  are the thermodynamics surface tension of solid-vapor interface, liquid-vapor 

interface and solid-liquid interface respectively. Equation(1) is suitable for an ideal smooth surface 

and it takes no account of the three-phase molecular interactions at contact line. 

Gibbs described the surface thermodynamics concept of line tension in  his classical theory of 

capillarity[11]. He thought the three-phase contact line has the important role in wetting. Since then, 
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the excess energy of the contact line along the surface per unit perimeter length has been ascribed to 

the line tension [12, 13]. The experimental and theoretical studies to the line tension effects of the 

three-phase contact line have been studied by many academicians [12, 14-17]. Despite many 

researchers have various views to line tension. However, when line tension effects being not 

negligible, the equation of the contact angle should be different from Young Equation (1) when 

taking the line tension effects into consideration. 

    In condition, line tension cannot be constant. Considering the line tension effects and using Gibbs 

method of dividing surfaces, for the case of liquid droplet on a planar smooth homogeneous solid 

surface, a generalized Young's equation was developed by Rusanov et al [18]. 

    
1

cos cos
Y

LG L LG L

k dk

R dR
θ θ

σ σ

 
= − −  

 
                                      (2) 

Where θ  is the contact angle, 
L

R  is the radius of three-phase contact line, k  is the corresponding 

line tension. The line tension derivative [ ]/ Ldk dR  with respect to the dividing surface location in 

the substrate plane at a fixed physical state of the system is determined by an arbitrary choice of the 

dividing line and the liquid-vapor dividing surface. 

Real solid surfaces are usually chemically heterogeneous. For the cases of chemically 

heterogeneous but smooth solid substrate, Cassie obtained the following equation for the wetting of 

solid surfaces consisting of two different materials [19]. 

1 1 2 2cos cos cosf fθ θ θ= +                                       (3) 

where θ  is the equilibrium contact angle, 1θ  and 2θ  are the contact angles of the two species of 

solid surface respectively, 1f  and 2f  are the fractional surface areas of the two type of materials. 

For the case of spherical droplet on the planar surfaces, Equation (3) described by Cassie-

Baxter is applicable. But, when considering the line tension effects and the solid substrate having 

curved surfaces, Equation (3) is not applicable. In this work, considering the line tension effects to 

the contact angle, we dedicated ourselves to studying the wetting phenomena of cylindrical droplet 

on heterogeneous and cylindrical solid outer surfaces. A new Cassie-Baxter equation for wetting of 

cylindrical droplet on heterogeneous and cylindrical outer surfaces was derived. 

2. Calculation of the total Helmholtz free energy of the three-phase system  

The wetting of a cylindrical droplet on the chemically heterogeneous and cylindrical outer 

surfaces is shown in the following Figure (refer to Figure1). In the Figure, θ  is the contact angle, β  

is the angle between the substrate surfaces and the local principal plane of the three-phase contact 

line, α  is the angle between the liquid-vapor surface tangent and the local principal plane of the 

three-phase contact line, and α θ β= + . R  is the radius of the cylindrical droplet, 0R  is the radius 

of the cylindrical solid substrate, 
L

R  is the radius of the three-phase contact line. In this work, the 

cylindrical droplet is assumed to be sufficiently small for the effect of gravity on the shape to be 

negligible relative to interfacial forces. 

For the sake of simplicity, we suppose that the solid substrate consists of only two type of 

substances. So, there are two type of solid-liquid interfaces, solid-vapor interfaces and solid-liquid-

vapor contact lines. We described their thermodynamic surface tension, line tension by 1SL
σ , 2SL

σ , 

1SG
σ , 2SG

σ and 1k , 2k  respectively. 

Then, we have two contact angles 1θ  and 2θ  respectively. These two contact angles 1θ  and 2θ  

are expressed by the following well-known Young's equation 
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1 1
1

cos SG SL

LG

σ σ
θ

σ

−
= , 2 2

2
cos SG SL

LG

σ σ
θ

σ

−
=                                 (4) 

On the basis of Gibbs method of dividing surface [11] and dividing line, this solid-liquid-vapor 

system can be separated into six portions, i.e. liquid phase, vapor phase, the liquid-vapor interface, 

the solid-liquid interface, the solid-vapor interface and the three-phase contact line. We obtained the 

total Helmholtz free energy F  of the three-phase system 

L G SL SG LG SLG
F F F F F F F= + + + + +                           (5) 

where 
L

F , 
G

F , 
SL

F , 
SG

F ,
LG

F and 
SLG

F  indicate the free energies of six portions, respectively. 

 

 

 

 

Fig. 1 An illustration of hydrophilic wetting of a cylindrical droplet on heterogeneous and 

smooth cylindrical solid outer surfaces 

 

In this study, each areas of the two type of solid-liquid interfaces and the two type of solid-

vapor interfaces are assumed to be extraordinary small in comparison with the size of the liquid 

cylindrical droplet. We also suppose that the individual length of the two type of three-phase contact 

lines are very short with respect to the size of the liquid cylindrical droplet. So, the following 

equation were obtained [18,20,22-25] 

  
L L L L L

F p V Nµ= − +                                            (6) 

           
G G G G G

F p V Nµ= − +                                            (7) 

LG LG LG LG LG
F A Nσ µ= +                                         (8) 

  
1 1 2 2

( )
SL SL SL SL SL SL

F f f A Nσ σ µ= + +                                (9) 

  
1 1 2 2

( )
SG SG SG SG SG SG

F f f A Nσ σ µ= + +                            (10) 

1 1 2 2
( )

SLG SLG
F g k g k L= +                                        (11) 
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Where p , V , A  indicate the pressures, volume and surface area, respectively. µ , N  denote the 

chemical potential and the corresponding mole number of molecule of liquid phase and vapor 

phase, respectively. σ , k  indicate the thermodynamic surface tension and line tension, 

respectively. Subscripts S , L , G  denote solid, liquid and vapor phase, respectively. 
1

f  and 
2

f  are 

the fractional surface areas of the two kind of materials, so 
1

f  + 
2

f = 1. 
SLG

L  is the true value of the 

total length of the three-phase contact line, 
1

g  and 
2

g  are the fractional length of the two kind of 

three-phase contact lines, hence 
1

g  + 
2

g  = 1. 

In order to simplify the calculation, we suppose that the equilibrium shape of a cylindrical 

droplet on a smooth and chemically heterogeneous cylindrical solid substrate is a segment of a 

cylinder. 

The volume of liquid phase 
L

V  can be written as 
2 3 2 2

0 0[( sin cos ) ( sin cos )]LV L R R R Rα α α β β β= − − −
              

(12) 

where R  , L  is the radius and length of the cylindrical liquid droplet, respectively. 

    The total volume 
t

V  of the system is  

t L G
V V V= +                       (13) 

The surface area
LG

A of the liquid-vapor interface is given by  

                         2
LG

A RLα=                                 (14) 

The surface area
SL

A of the solid-liquid interface yields 

 
0

2
SL

A R Lβ=                                   (15) 

The total surface area 
t

A  of the solid-liquid and solid-vapor interfaces has the form 

 
t SL SG

A A A= +                                (16) 

where 
SG

A  is surface area of the solid-vapor interface. 

The length of the three-phase contact line can be described by the following equation 

                         2
SLG

L L=  
                                   

(17) 

Based on the above expressions, we obtained the free energy of the system by the following 

equations  
2 2 2 2

0 0[( sin cos ) ( sin cos )]L L L LF p L R R R R Nα α α β β β µ= − − − − +          (18) 

{ }2 2 2 2

0 0
[( sin cos ) ( sin cos )]

G G t G G
F p V L R R R R Nα α α β β β µ= − − − − − +    (19) 

2
LG LG LG LG

F RL Nσ α µ= ⋅ +                                          (20) 

1 1 2 2 0
( ) 2

SL SL SL SL SL
F f f R L Nσ σ β µ= + ⋅ +                                    (21) 

1 1 2 2 0
( )( 2 )

SG SG SG t SG SG
F f f A R L Nσ σ β µ= + − +                              (22) 

1 1 2 2
2 ( )

SLG
F L g k g k= +                                             (23) 

Substituting the above results into Equation (5), we have the total Helmholtz free energy F  in 

the form 

                                                                             
2 2 2 2

0 0

1 1 2 2 1 1 2 2 0

1 1 2 2 1 1 2 2

( ) [( sin cos ) ( sin cos )]

2 [( ) ( )] 2

( ) 2 ( )

L G

G t LG SL SL SG SG

SG SG t

L L G G LG LG SL SL SG SG

F p p L R R R R

p V RL f f f f R L

f f A L g k g k

N N N N N

α α α β β β

σ α σ σ σ σ β

σ σ

µ µ µ µ µ

= − − − − −

− + ⋅ + + − + ⋅

+ + + +

+ + + + +

            (24) 
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3. Derivation of a generalized Cassie-Baxter equation  
 

The grand thermodynamic potential Ω  of the three-phase system is  

 
i i

i

F NµΩ = −∑                                         (25) 

where i  is the number of subsystems of the system, 
i

µ  are the corresponding 

chemical potentials of the subsystems, 
i

N  are the corresponding mole numbers of molecules of the 

subsystems. 

Substituting equation (24) into Equation(25), we described the total grand 

potential Ω  of the system by the following equation 
2 2 2 2

0 0

1 1 2 2 1 1 2 2 0

1 1 2 2 1 1 2 2

( ) [( sin cos ) ( sin cos )]

2 [( ) ( )] 2

( ) 2 ( )

L G

G t LG SL SL SG SG

SG SG t

p p L R R R R

p V RL f f f f R L

f f A L g k g k

α α α β β β

σ α σ σ σ σ β

σ σ

Ω = − − − − −

− + ⋅ + + − + ⋅

+ + + +

    (26) 

The temperature and chemical potential are assumed to be constant in the system equilibrium. 

The actual physical characteristics of the system and external conditions are fixed. Therefore, the 

thermodynamic potential Ω  is independent on the pure imaginary variation of radius R [18]. The 

following restriction is obtained 

0
d

dR

Ω 
=  

                               (27) 

Putting equation(26) into equation(27), the following result is obtained 

      

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2
1 1 2 2

( )

[( ) ( )]

[( ) ( )]

( )
( )

LG LGL
L G LG LG

SL SL SG SG
SL

SL
SL SL SG SG

SLG
SLG

d dAdV
p p A

dR dR dR

d f f f f
A

dR

dA
f f f f

dR

dLd g k g k
L g k g k

dR dR

σ
σ

σ σ σ σ

σ σ σ σ

    
− − ⋅ + ⋅ + ⋅         

+ − + 
+   

 
+ + − + ⋅   

+   
+ ⋅ + + ⋅ =     

0

       (28) 

For the sake of simplify equation(28), the following expressions are assumed valid 

 

1 2 0SL SLd d

dR dR

σ σ   
= =      

             (29) 

1 2 0SG SGd d

dR dR

σ σ   
= =      

                         (30) 

The dividing surfaces of liquid-vapor interface of a liquid droplet on a homogeneous and solid 

substrate should be parts of concentric and conformal cylindrical surface. These dividing surfaces 

are segmental. So, the following 

equations are obtained 

0sin sinR Rα β= , 0 0cos cosR R O O constβ α− = =       (31) 

cos( )

sin( )

d

dR R

α α β

α β

−
=

−
, 

0

1

sin( )

d

dR R

β

α β
=

−
                (32) 
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and  

0sin sin
L

R R Rα β= = , 
cos

sin( )

L
dR

dR

β

α β
=

−
              (33) 

Utilizing equation (31-32), the following results are obtained 

2LdV
R L

dR
α

 
=  

                                (34) 

cos( )
2 2

sin( )

LGdA
L L

dR

α β
α

α β

− 
= +  − 

                   (35) 

2

sin( )

SLdA L

dR α β

 
=  − 

                            (36) 

0SLGdL

dR

 
=  

                                   (37) 

Based on the generalized Laplace's equation [21] of a free cylindrical droplet in vapor, we have 

the equation  

 

LG LG
L G

d
p p

R dR

σ σ 
− = +   

                              (38) 

It can be used for the cylindrical droplet in this work. 

According to α θ β= +  and equation (29-30). Putting equations (34-38) into equation(28), we 

have 

1 1 2 2 1 2
1 2 1 2

sin
cos SG SL SG SL

LG LG LG

dk dk
f f g g

dR dR

σ σ σ σ θ
θ

σ σ σ

− −     
= + − +        

       (39) 

This is a new generalized Cassie-Baxter equation for cylindrical droplet on chemically 

heterogeneous and cylindrical smooth but non-deformable solid substrate. 

Using equation (4) and equation(33), equation(39) become of the following expression 

1 2
1 1 2 2 1 2

cos
cos cos cos

L L LG

dk dk
f f g g

dR dR

β
θ θ θ

σ

    
= + − +     

    
              (40) 

Equation (40) is a new generalized Cassie-Baxter equation for cylindrical droplet on 

heterogeneous and smooth cylindrical outer surfaces. 

If we suppose 0β =  , then cos 1β =  , the cylindrical surfaces reduce to the planar surfaces, 

further, if the line tension is assumed negligible, then equation(40) is the same as the classical 

Cassie-Baxter equation(3). 

 
4.  Conclusion 

           Based on Gibbs method of dividing surfaces and dividing lines, the wetting of cylindrical 

droplet on heterogeneous and smooth but chemically non-deformable cylindrical solid outer 

surfaces were studied by methods of thermodynamics. We derived a generalized Cassie-Baxter 

equation for contact angle between cylindrical droplet and heterogeneous smooth cylindrical solid 

outer surfaces, taking the line tension effects into consideration. If the line tension is assumed 

negligible, this generalized Cassie-Baxter equation is the same as the classical Cassie-Baxter 

Equation (3). 
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