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Abstract 
The wetting properties of cylindrical droplets between the outer surfaces of two tangent cylinders are 

investigated by means of thermodynamics. For the three-phase system containing solid, liquid and vapor 

phases, a generalized Young equation for contact angles of cylindrical drops between the outer surfaces of two 

tangent cylinders has been thermodynamically derived. In fact, the theoretical foundation of the derived 

generalized Young’s equation is based on Gibbs’s capillary phenomena and the method of Rusanov’s dividing 

line.   ©2016 Science Front Publishers 
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1. Introduction  
   Wetting phenomena are essential and usual in a variety of natural and industrial processes [1-5]. Wetting of 

solids by liquids has attracted significant experimental and theoretical attention in past two decades [6-11]. In 

particular, the contact angle characterizing wetting behaviors not only indicate how well a fluid wets a solid 

surface, but also display the penetration of liquids in porous solids, as well as the description of solid surfaces 

treatments [12]. 

  The contact angle is expressed as the angle between the liquid/gas and the solid/liquid interfaces, at the 

position where the three phases (solid, liquid, and vapor) meet. For a chemically homogeneous and smooth solid 

surface, the contact angle is presented by Young’s equation [6] 
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where 
Yθ  is the equilibrium contact angle, 

SV
σ , 

SL
σ

 
and 

LV
σ  are the interfacial tensions that exist between the 

solid (S), vapor (V), and liquid (L), respectively. 

   In recent years a large number of investigations have been carried out regarding the wetting phenomena in 

capillaries. For the cylindrical drops on solid surfaces, N. Dumitrascu [13] studied the contact angle between 

liquids and cylindrical surfaces. Davide Mattia [14] carried out the conditions for the stability of liquid films on 

and inside cylindrical solid substrates, especially emphasizing on nanometre scale substrates. Vlado A. Lubarda 
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[15] investigated the stability of a cylindrical liquid bridge between two parallel plates and derived a closed 

expression with respect to the height of the bridge of cylindrical droplets.  

   However, to the best of our knowledge, there is still not the generalized Young’s equation for cylindrical 

drops between the outer surfaces of two tangent cylinders. Therefore, in order to study the wetting properties of 

cylindrical drops between the outer surfaces of two tangent cylinders, in line with the principles of both Gibbs’s 

dividing surfaces and Rusanov’s dividing line, a generalized Young equation for contact angles is derived using 

the method of thermodynamics. 

 

2. Calculating the systemic free energy 
     Considering a cylindrical droplet with single component, associated with its equilibrium vapor, placed 

between the outer surfaces of two tangent cylinders (see Figure 1). 
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Figure 1. A cylindrical droplet between the outer surfaces of two tangent cylinders 

According to the theory of Gibbs’s dividing surfaces, the system, which is illustrated in figure 1, consists of 

six subparts, that is, liquid phase, vapor phase, solid/liquid interface, solid/vapor interface, liquid/vapor 

interface, as well as the triple phase line. And then, the Helmholtz free energy F of this system is obtained by 

 
L V SL SV LV SLV

F F F F F F F= + + + + +     (2) 

where 
L

F , 
V

F , 
SL

F , 
SV

F ,
LV

F  and 
SLV

F  are the Helmholtz free energies of the liquid phase, the vapor phase, 

solid/liquid interface, solid/vapor interface, liquid/vapor interface, and the triple phase line, respectively. 

The various free energies have the following forms 
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F p V Nµ= − +                                        (3) 
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F A Nσ µ= +                                       (5) 
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                                               SLV SLV SLV SLV
F kL Nµ= +

 
             (8) 

where 
L

p and 
V

p are the pressures of the liquid and vapor phases respectively, 
L

V and 
V

V are the volumes of the 

liquid and vapor phases, respectively, 
SL

σ , 
SV

σ and 
LV

σ  are the surface tensions of the solid/liquid, 

solid/vapor, and liquid/vapor interfaces respectively,
 SL
A , 

SV
A and 

LV
A  are the surface areas of the solid/liquid, 

solid/vapor, and liquid/vapor interfaces, respectively, k is the line tension, 
SLV

L  is the length of the triple phase 

line, and 
L

µ ,
V

µ ,
SL

µ ,
SV

µ ,
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µ ,
SLV

µ , as well as 
L

N ,
V

N ,
SL

N ,
SV

N ,
LV

N ,
SLV

N are the chemical potentials 

and the mole numbers of molecules of the corresponding phases, interfaces, and the triple phase line 

respectively. 

For the purpose of simplicity, ignoring the gravity and the other forces or fields, and then, the equilibrium 

shape of a cylindrical droplet between the outer surfaces of two tangent cylinders is the combination of the 

prism same as a triangular prism and a cylindrical cap. 

The volume 
L

V
 
of the liquid phase is given by 
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Where R and L are the radius and height of the cylindrical drop, respectively α  is the angle between 

the radius 
0R and the vertical line, and β  is the apparent contact angle. 

The total system volume Vt  is given by 

 t L V
V V V= +       (10) 

The liquid/vapor interfacial area
LV

A is expressed as 

 
2

LV
A R Lβ=                                  (11) 

The solid/liquid interfacial area
SL

A is written by 
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The total interfacial area
t

A of the solid/liquid and solid/vapor interfaces is obtained as 

 
t SL SV

A A A= +       (13) 

The length of the three-phase line is written as 

                        2
SLV

L L=
                                 

(14) 

Based on the relations above, various free energies can be rewritten as 
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2
LV LV LV LV

F R L Nσ β µ= ⋅ +                                                                     (19) 

2
SLV SLV SLV

F Lk Nµ= +                                                                           (20) 

Now putting the above Eqs. (15-20) into Eq. (2), the free energy F of the total system is rewritten as 
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3. Derivation of a generalized Young’s equation 

The grand thermodynamic potential Ω of a system containing a solid, a one component droplet as well as 

its vapor is expressed as 

 
i i

i

F NµΩ = −∑       (22) 

where the subscript i  is the number of subsystems of the system. 

Substituting Eq. (21) into Eq. (22) leads to 
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(23) 

Because grand potential Ω , the surface tensions
SL

σ  and 
SV

σ  are independent of the choice of dividing 

surfaces [16], we get  

 0
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 Using Eq. (23) to (25), one gets 
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                        (26) 

From figure 1 we can obtain the following expressions 

0 0sin sinR R R constα β+ = =
                                             (27) 

0 cos cosR R OA constα β− = =
                                            (28) 
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and 
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Using both Eqs. (9, 11, 12, 14) and Eqs. (30-31), we get 

                   

2LdV
RL

dR
β

 
=  

                                                           
(32) 

                   

( )
( )

cos
2 2

sin

LVdA
L L

dR

α β
β

α β

+ 
= + ⋅  +                                                                                             

(33) 

                   
( )
2

sin

SLdA L

dR α β

 
=  +                                                                                                                

(34) 

                   

0SLV
dL

dR

 
=                                                                                                                               

(35) 

It is well known that the Laplace’ equation [17] of a free cylindrical liquid drop in vapor satisfies 

 

LV LV
L V

d
p p

R dR

σ σ 
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(36) 

It can be used for the droplet in figure 1. 

Substituting Eqs. (32-35) into Eq. (26), we get,
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Putting Eq. (29) into Eq. (37) yields 
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                                                   (38) 

By comparing the classical Young’s equation (1) with Eq. (38), we get 

sin
cos cos

Y

LV

dk
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θ
θ θ

σ

 
= − ⋅                                                                

(39) 

Hence, in terms of cylindrical droplets between the outer surfaces of two tangent cylinders, Eq. (39) is the 

generalized Young’s equation applicable to arbitrary dividing surfaces between the liquid and vapor phases. 

 

4. Conclusion 
 In this research, according to the concepts of Gibbs’s dividing surfaces and Rusanov’s dividing line, the 

wetting characteristics of cylindrical droplets between the outer surfaces of two tangent cylinders are 

investigated by method of thermodynamics. Taking the effects of the line tension into account, a generalized 

Young equation for contact angles of cylindrical droplets between the outer surfaces of two tangent cylinders, 

has been derived based on the method of Gibbs’s dividing surfaces. 
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