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   Abstract 
The contact angles of cylindrical droplets on smooth and chemically homogeneous non-

deformable substrates were studied by methods of thermodynamics. The total grand potential of the 

system was calculated. Then, a generalized Young's equation for wetting of cylindrical droplets on 

chemically homogeneous and smooth substrates was derived based on the thermodynamic 

equilibrium condition. The theoretical derivation of the generalized Young's equation is a typical 

application of Gibbs' theory of capillary phenomena. 
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1. Introduction 
Wetting phenomena are common in solid-liquid-gas systems, for instance, wetting of liquid droplets on 

solid surfaces, adhesives, lubricants and capillary penetration in to porous media [1,2]. Wetting abilities are 

important in many industrial applications, for example, the wetting abilities of electrolytes on electrodes plays a 

key role in improving the specific energy density of super-capacitors [3] and lithium-ion batteries [4]. 

In 1805, Thomas Young argued that the contact angle θ for the wetting of spherical droplets on smooth and 

chemically homogeneous substrates is determined by the following equation [5]  

 

(1) 

 

Where, 
LG

s
 
is the surface tension of the liquid-vapor interface corresponds to the choice of the surface of 

tension as a dividing surface, 
SG

s
 
is the surface free energy per unit area of the solid-vapor interface, 

SL
s

 
is the 

surface free energy per unit area of the solid-liquid interface. 

Now, Eq. (1) is called the Young’s equation. The Young’s equation Eq. (1) is widely applied to 

macroscopic capillary phenomena [2, 4]. 

In 1878, Gibbs for the first time gave a theoretical derivation of the Young’s equation Eq. (1) based on the 

theory of thermodynamics [7]. Since then, many theoretical research works have been carried out [2]. 
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However, for cylindrical droplets, the validity of the Young’s equation Eq. (1) is still open. The purpose of 

this paper is to present a theoretical study the contact angles of cylindrical droplets on smooth and chemically 

heterogeneous substrates by methods of thermodynamics. 

 

2. The Helmholtz free energy for wetting of a cylindrical droplet  

  on smooth substrate 
Consider a single-component cylindrical liquid droplet in contact with chemically homogeneous and 

smooth substrates. The solid surface may be either hydrophobic or hydrophilic. An illustration of hydrophilic 

wetting is shown in Figure 1. 

 

 
Figure 1.Wetting of a cylindrical droplet on a smooth substrate 

 

For simplicity, we only consider the case of hydrophilic wetting. The same result can be obtained for the 

case of hydrophobic wetting. 

The gradient of density at any point is nonzero in a liquid-vapor transition layers. According to Gibbs[8], 

we can always choose a set of parallel surfaces which are everywhere perpendicular to the density gradient. Any 

one of these mathematical surfaces can be chosen to be what Gibbs calls the dividing surface. Detailed 

discussion of dividing surface can be found in Ref. [8,9,10]. To further investigate this concept, the students or 

beginners in this field are encouraged to consult Gibbs’s original paper [7]. We also attempt to explain this 

concept in detail in Ref. [11]. 

Introducing Gibbs’s concept of dividing surface and the concept of dividing line [7,9-10], the above solid-

liquid-vapor system can be divided into six subsystems, i.e. liquid phase, vapor phase, the liquid-vapor interface, 

the solid-liquid interface, the solid-vapor interface and the three-phase contact line. 

Therefore, the total Helmholtz free energy F of the system is the sum of the Helmholtz free energies of 

these seven parts. Thus, we have 

                L G LG SL SG SLGF = F  + F + F  + F  + F  + F
       (2)

 

Where, F is the total Helmholtz free energy, G L LG SL SGF ,F ,F ,F ,F and SLGF are the Helmholtz free energies of the 

seven parts respectively. 

The Helmholtz free energies of these seven parts can be written as 
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LLL
mNLRpF +−−= 2)cossin( θθθ

        L L L L LF  = -p V  + Nm
                          (3)

 

 G G G G GF  = -p V  + Nm
                        (4)

 

LG LG LG LG LGF  = A Ns m+
                    (5)

 

 SL SL SL SL SLF  = A  + Ns m
                     (6)

 

SG SG SG SG SGF  = A  + Ns m
                     (7)

 

SLG SLG SLG SLGF  = L Nk m+
                     (8)

 

where
L

p and 
G

p are the pressures of the liquid phase and the vapor phase respectively,
 L
V and 

G
V are the 

volumes of the liquid phase and the vapor phase respectively, mis the chemical potential of the six subsystems, 

, , , ,
L G LG SL SG

N N N N N and 
SLG

N are the mole numbers of molecules of the liquid phase, the vapor phase, the 

liquid-vapor interface, the solid-liquid interface, the solid-vapor interface and the three-phase contact line 

respectively, 
,LG

A
SL

A and
SG

A are the surface area of the liquid-vapor interface, the solid-liquid interface, the 

solid-vapor interface respectively, ,
LG

s
SL

s and 
SG

s are the surface tensions of the liquid-vapor interface, the 

solid-liquid interface, the solid-vapor interface respectively, 
SLG

L is the value of the length of the three-phase 

contact line, k is the line tension. 

In order to calculate the geometrical quantities in the above equations, we may introduce the following 

assumption: 

Assumption 1: Suppose the equilibrium shape of a droplet on a smooth and homogeneous solid substrate is 

a part of a cylinder which was cut by a plane parallel to the axis of the cylinder. 

Now let us calculate some related geometrical quantities in the above equations respectively. 

The total volume 
t

V of the system is 

   

 t L G
V = V  + V .

                        (9)
 

The volume of liquid phase 
L

V
 
is, 

                                    
          (10)

 

 

Where, R  is the radius of the cylindrical liquid droplet, θ  is the contact angle, L  is the length of the cylindrical 

liquid droplet. 

Based on the above relations, we have  

 

                            (11) 

           

 (12) 

The surface area 
LG

A of the liquid‐vapor interface is 

                        (13) 

The total surface area 
t

A of the solid-liquid interface and the solid-gas interface is 

 t SL SG
A  = A  + A ,

 (14) 

LRV
L

2)cossin( θθθ −=

GtGG
mNLRVpF +−−−= ])cossin([ 2θθθ

RLA
LG

θ2=
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Where, 
SG

A is surface area of the solid-gas interface, 
SL

A is the surface area of the solid-liquid interface. 

The surface area 
SL

A of the solid-liquid interface is 
 

             (15)
 

The length 
SLG

L of the three-phase contact line is 

 
SLG

L 2 .L=
                (16)

 

Now based on Eq.(13), Eq.(15) and Eq.(16), we have 

            (17) 

 

  
           (18) 

 

  
           (19) 

  

 SLG SLG
F  = 2L + N .k m                   (20) 

Therefore, putting Eq. (11-12) and Eq.(17-20) into Eq.(2), the total Helmholtz free energy F can be written 

as 

 

        (21) 

    

 

 

3.  Generalized Young’s equations based on thermodynamic equilibrium condition 
The purpose of this section is to derive a generalized Young’s equations for cylindrical droplets on smooth 

and homogeneous solids by methods of thermodynamics. 

According to Gibbs’s concept of dividing surface [8], we can choose an arbitrary conformal surface as a 

dividing surface. Now, we suppose that the radius R of the dividing surface has already been chosen according 

to some fixed conditions. The contact angle θ now becomes variable. 

The thermodynamic equilibrium condition at a fixed temperature T of an open system is [10] 

 
µθ Τ,

∂Ω 
= 0 

∂ 
              (22)

 

Where, the subscript T and µ
 
stands for fixed temperature T and fixed chemical potential µ . 

It is convenient to introduce the concept of grand potential to treat an open system. The definition of the 

grand potential  of a system is [9] 

 i i i

i=1

= (F - N ),
T

µΩ ∑
              (23)

 

where  is the number of subsystems of the system,  is the Helmholtz free energy of the -th subsystem, 
i

µ  is 

the chemical potential of the -th subsystem,  is the mole numbers of molecule of the -th subsystem. 

Putting Eq. (23) into Eq. (22), the thermodynamic equilibrium condition becomes [10] 

 
,

0.
T µθ

∂Ω 
= 

∂ 
              (24)

 

Putting Eq. (11-12) and Eq. (17-19) into Eq. (23), the total grand potential Ω of the above system is, 

LRASL θsin2=

LGLGLG mNRsF +−= )cos1(2 2 θθ

SLSLSL mNLRsF += )sin2( θ

SGtSGSG mNLRAsF +−= )sin2( θ

SLGSGtSGSGSLLGSLLG

GLtGGL

mNLkmNAsLRssmNmNRLs

mNmNVpLRppF

++++−++++

++−−−−=

2sin2)(2

)cossin()( 2

θθ

θθθ
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(25)

 

 

Putting Eq. (25) into Eq. (24), we have 
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T µ
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       (26)

 

 

 

Where, 

 

                                     (27) 

                                              (28) 

                                           (29) 

4 t, 
Af =                                            (30) 

5
2 .f L=                                            (31) 

   

In order to simplify Eq. (26), we introduce the following assumption. 

Assumption 2: Suppose the following equations are valid for the wetting of cylindrical droplets on smooth 

and chemically homogeneous non‐deformable substrates 

( )L

,

p p
0,G

T µ
θ

∂ − 
= 

∂ 
                        (32) 

,

0,SL

T µ

σ

θ

∂ 
= 

∂ 
                            (33) 

SG

,

0,
T µ

σ

θ

∂ 
= 

∂ 
                            (34) 

LG

,

0.
T µ

σ

θ

∂ 
= 

∂ 
                            (35) 

We have the following results 

LkAsLRssRLsVpLRpp tSGSGSLLGtGGL 2sin2)(2)cossin()( 2 ++−++−−−=Ω θθθθθ

LRf 2

1 )cossin( θθθ −=

RLf θ22 =

θsin23 LRf =
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2 21

,

2 sin ,
T

f
R L

µ

θ
θ

=
∂ 
 

∂ 
              (36) 

2

,

2 ,
T

f
RL

µθ
=

∂ 
 

∂ 
                    (37) 

3

,

2 cos ,
T

f
RL

µ

θ
θ

=
∂ 
 

∂ 
              (38) 

4

,

0,
T

f

µθ
=

∂ 
 
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                      (39) 

5

,

0.
T

f

µθ
=

∂ 
 

∂ 
                    (40) 

Putting Eqs. (32-40) into Eq. (26), we obtain, 

 

2

L G LG

,

- (p  - p )  sin

1
( ) cos 0.

SL SG

T

R

R µ

θ σ

κ
σ σ θ

θ

+

∂ 
+ − + = 

∂ 
      (41)

 

It is known that a generalized Laplace’s equation of a free cylindrical droplet in vapor can be written as [12], 

 ,LG LG
L G

d
p p

R dR

σ σ 
− = +                (42)

 

where the differential in square bracket[ ]denotes the change resulted from a mathematical variation of the 

position of this dividing surface by the amount dR in the same physical system under the same fixed physical 

state. 

Applying Eq. (42), Eq. (41) becomes 

 

LG

LG

,LG

dsin tan
cos

dR

1
.

R cos

SG SL

LG

T

R

µ

σσ σ θ θ
θ

σ σ

κ

σ θ θ

−  
= +  

 

∂ 
−  

∂ 
      

               (43)

 

Eq. (43) is a generalized Young’s equation for wetting of a cylindrical droplet on chemically homogeneous 

and smooth non-deformable substrates. Eq.(43) is the main results of this work. 

Following Gibbs [8, 10], we introduce the concept of surface of tension M
s
as follows 

 LGd
0,

dR
sR R

σ

=

 
=  

                 (44)

 

where R
s
is the radius of the surface of tension 

s
M

.
 

If we choose the surface of tension 
s

M as the dividing surface, then Eq. (43) becomes 

 
,LG

1
cos .

R cos

SG SL

LG T µ

σσ κ
θ

σ σ θ θ

− ∂ 
= −  

∂ 
           (45)

 

Eq. (45) is a useful generalization of the Young’s equations Eq. (1) for wetting of cylindrical droplets. 
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4. Conclusion: 
For wetting of cylindrical droplets on solid surfaces, theoretical verification of the validity of the Young’s 

equation is still open. The contact angles of cylindrical droplets on smooth and chemically homogeneous non-

deformable substrates were studied by methods of thermodynamics. The total grand potential of the system was 

calculated. A generalized Young’s equation for wetting of cylindrical droplets on chemically homogeneous and 

smooth non-deformable substrates was derived based on the thermodynamic equilibrium conditions. The 

theoretical derivation of the generalized Young’s equation is a typical application of Gibbs’ theory of capillary 

phenomena. 
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