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Abstract 
Isochronous systems are not rare in dynamical systems. Three complex-valued nonlinear 

systems (quadratic and cubic nonlinearity, van der Pol, gyroscopic oscillator) are investigated 

by an asymptotic perturbation method based on Fourier expansion and time rescaling. Four 

coupled equations for the amplitude and the phase of solutions are derived. Approximate 

solutions are obtained and their stability is discussed. We find that in the first two cases the 

motion is periodic, while in the third case the motion is periodic only if appropriate 

Diophantine relations are satisfied. Analytic approximate solutions are checked by numerical 

integration. 

Keywords:  : periodic motion, complex-valued system, asymptotic analysis, Diophantine 

equations. 

1. Introduction 
In the last years researchers began to consider extensively isochronous behavior in nonlinear 

oscillators but above all in autonomous systems [1-3]. A system is called isochronous when it shows 

in its phase space a sector where all its solutions are periodic. We want to extend this investigation 

about isochronous system for the complex-valued systems. complex-valued nonlinear dynamical 

systems have been extensively studied, by means of approximate analytical and numerical methods . 

The complex-valued nonlinear differential equations appears in many fields of science, for instance 

rotor dynamics, high-energy particle accelerators, robots and shells[4]. Helleman [5] and Bountis 

and Mahmoud [6] have carefully studied the existence and stability of periodic orbits for a complex-

valued nonlinear system describing colliding beams. Mahmoud and Aly [7] used the indicatrix 
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method to detect the existence of periodic orbits of the same nonlinear system. By the generalized 

averaging method they obtained approximate analytical solutions for periodic orbits with period 

equal to the damping force period (phase-locked solutions) and investigated their stability. 

Manasevich et al. [8] investigated periodic solutions of some complex-valued Liénard and Rayleigh 

equations. Mamoud [9] obtained approximate solution of a class of complex nonlinear dynamical 

systems. In a series of papers [10-13] Cveticanin developed a method for solving complex-valued 

nonlinear systems. Maccari [14] investigated period and quasi-periodic solutions of a complex-

valued nonlinear system. 

In this paper we study the complex-valued quadratic and cubic nonlinear oscillator, 

�̈� + 𝜔ଶ𝑧 + 𝑎ଵ𝑧ଶ + 𝑎ଶ𝑧ଷ = 0,           (1) 

the complex-valued van der Pol oscillator, 

�̈� + 𝜔ଶ𝑧 + 𝑎ସ�̇� + 𝑎𝑧ଶ�̇� = 0,           (2) 

and finally the gyroscopic function in the following form 

�̈� + 𝜔ଶ𝑧 + 𝑎ଷ|�̇�|ଶ𝑧 + 𝑖𝑎ହ�̇� + +𝑖𝑎|𝑧|ଶ�̇� = 0,        (3) 

where 𝑧(𝑡) = 𝑥(𝑡) + iy(𝑡), the dot denotes differentiation with respect to the time and a1, a2, a3, a4, 

a5, a6, a7 are appropriate parameters. The paper is arranged as follows.  

In Section 2 we use a suitable perturbation method [15-16], calculate the lowest order approximate 

analytic solution of the equation (1) and derive a non-linear system of four coupled differential 

equations in the phase and amplitude of solutions. We demonstrate that the phase-locked solutions 

and isochronous systems corresponding to bounded motion are possible for this nonlinear system. 

In Section 3 the same analysis is performed for the complex-valued van der Pol oscillator and one 

again isochronous solutions are possible and the corresponding steady-state finite amplitude 

solutions are derived. 

At last Section 4 we study the gyroscopic function and show that periodic solutions are possible only 

if appropriate Diophantine relations are verified 

Analytic approximate solutions are constructed and compared with numerical integration.  

Final considerations are exposed in Section 5. 

 

2. The complex-valued quadratic and cubic nonlinear oscillator 
From the equation (1) we see that the complex-valued nonlinear system with quadratic and cubic 

nonlinearities corresponds to two coupled nonlinear oscillators: 

�̈� + 𝜔ଶ𝑋 + 𝑎ଵ(𝑋ଶ − 𝑌ଶ) + 𝑎ଶ𝑋(𝑋ଶ − 3𝑌ଶ) = 0,        (4) 

�̈� + 𝜔ଶ𝑌 + 2𝑎ଶ𝑋𝑌 + 𝑎ଷ𝑌(3𝑋ଶ − 𝑌ଶ) = 0.         (5) 

We now introduce the slow time 

𝜏 = 𝜀ଶ𝑡,              (6) 

and with the substitution 𝑎ଵ → 𝜀𝑎ଵ, 𝑎ଶ → 𝜀ଶ𝑎ଶ, equation (1) yields  
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�̈� + 𝜔ଶ𝑧 + 𝜀𝑎ଵ𝑧ଶ + 𝜀ଶ𝑎ଶ𝑧ଷ = 0           (7) 

We assume for the equation (7) a solution z(t) of the form  

𝑧(𝑡) = ∑ 𝜀ఊ𝜓(𝜏, |𝜀)exp(−in𝜔𝑡),ାஶ
ୀିஶ[odd]         (8) 

i.e. a power series in the expansion parameter  (a bookkeeping device that will be set equal to unity 

in the final analysis), with 

 𝛾 = |𝑛| − 1.              (9) 

For the system analysis not only time rescaling but also Fourier expansion are needed, because the 

complex oscillator reduces for a vanishing value of the parameter 𝑒 to a simple harmonic 

oscillator. For small values of 𝑒, we observe a slow modulation of the coefficients of the Fourier 

expansion. 

The assumed solution (8) can be written more explicitly 

𝑧(𝑡) = ቀ𝜓ଵexp(−𝑖𝜔𝑡) + εψ
ଶ
exp(−2𝑖𝜔𝑡) + 𝜓ିଵexp(𝑖𝜔𝑡) + εψ

ିଶ
exp(2𝑖𝜔𝑡)ቁ + 𝜓 + 𝑂(𝜀ଶ),     

 (10) 

and we see that it can be considered a combination of the various harmonics with coefficients 

depending on  and . In the following, and in order to simplify our calculations, we will use 

the notations 

𝜓ଵ = 𝜓  𝜓ିଵ = 𝜙 .        (11) 

Note that the introduction of the slow time (6) implies that 
ௗ

dt
→ ቀ

ௗ

ௗఛ
− 𝑖𝑛𝜔ቁ.          (12) 

Using equation (8) and substituting into equation (7) yields various equations for each harmonic n 

and for a fixed order of approximation on the perturbation parameter  . 

For n=±1, we can derive two differential equations for the evolution of the complex amplitudes 

𝜓and 𝜙,  

𝑖
ௗట

ௗఛ
= 𝛼ଵ𝜓ଶ𝜙,              (13) 

 𝑖
ௗథ

ௗఛ
= −𝛼ଵψϕଶ.              (14) 

where 

𝛼ଵ = ቀ
ଷమ

ଶఠ
−

ହభ
మ

ଷఠయ
ቁ .              (15) 

Substituting the polar forms, 

𝜓(𝜏) = 𝜌(𝜏)exp൫𝑖𝜗(𝜏)൯, 𝜙(𝜏) = 𝜒(𝜏)exp൫𝑖𝛼(𝜏)൯,    (16) 

into equations (13-14), and separating real and imaginary parts, we arrive at the following nonlinear 

system 
ௗఘ

ௗఛ
= 𝛼ଵ𝜌ଶ𝜒sin(𝜗 + 𝛼),            (17) 

ௗఞ

ௗఛ
= −𝛼ଵρχଶsin(𝜗 + 𝛼),            (18) 
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ௗణ

ௗఛ
= −𝛼ଵρχcos(𝜗 + 𝛼),              (19) 

ௗఈ

ௗఛ
= 𝛼ଵρχcos(𝜗 + 𝛼).               (20) 

From (19-20) we see that 

𝜗 + 𝛼= cost                (21) 

From (17-18) we easily get 

𝜌𝜒 = 𝜌𝜒=cost, .             (22) 

where 𝜌 and 𝜒 are the initial conditions, 𝜌 = 𝜌(0), 𝜒 = 𝜒(0). Phase-locked periodic solutions of 

the complex-valued nonlinear system (7) (𝑑𝜌 𝑑𝜏⁄ = 𝑑𝜒 𝑑𝜏⁄ = 𝑑𝜗 𝑑𝜏⁄ = 𝑑𝛼 𝑑𝜏⁄ = 0) are 

impossible. However, steady-state finite-amplitude solutions of the equations exist and are given by 

 𝛼 + 𝜗 = 0 or 𝜋,  𝜌 = 𝜌=const,   𝜒 = 𝜒=const .     (23) 

The first of the conditions (23) is also requested to eliminate unbounded solutions. 

The first order bounded approximate solutions are (𝛼 + 𝜗 = 0) 

𝑋 = (𝜌 + 𝜒)cos൫(𝛼ଵ𝜌𝜒 + 𝜔)𝑡൯,        (24) 

𝑌 = (𝜒 − 𝜌)sin൫(𝛼ଵ𝜌𝜒 + 𝜔)𝑡൯,        (25) 

and (𝛼 + 𝜗 = 𝜋) 

𝑋 = (𝜌 − 𝜒)cos൫(𝛼ଵ𝜌𝜒 + 𝜔)𝑡൯,        (26) 

𝑌 = −(𝜌 + 𝜒)sin൫(𝛼ଵ𝜌𝜒 + 𝜔)𝑡൯,        (27) 

where 

𝛺 = 𝜔 + 𝛼ଵ𝜌𝜒,           (28) 

or respectively 

𝑧(𝑡) = 𝜌exp(−𝑖𝛺𝑡) + 𝜒exp(𝑖𝛺𝑡),        (29a) 

𝑧(𝑡) = 𝜌exp(−𝑖𝛺𝑡) + 𝜒exp(𝑖𝛺𝑡).        (29b) 

In Fig. 1 we show a comparison between the approximate solution (24-25) and the numerical 

solution of the same motion. We represent a projection of the associated map of the equation (1), 

obtained with the values (X(0),Y(0)), (X(T),Y(T)), (X(2T),Y(2T)), ....., where T is the period,  

𝑇 =
ଶగ

ఆ
.              (30) 

Crosses represent the approximate solution and boxes represent the numerical solution. The 

characteristic closed curve reveals that the motion is periodic (𝜌 = 0.8, 𝜒 = 0.4, 𝜔 = 1, 𝑎ଵ =

𝑎ଶ = 0.1). 
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FIGURE 1: Ccomparison between the approximate solution (24-25) and the numerical solution 

of the same motion. We represent a projection of the associated map of the equation (1), obtained 

with the values (X(0),Y(0)), (X(T),Y(T)), (X(2T),Y(2T)), ....., where T is the period, Crosses 

represent the approximate solution and boxes represent the numerical solution. The characteristic 

closed curve reveals that the motion is periodic (𝜌 = 0.8, 𝜒 = 0.4, 𝜔 = 1, 𝑎ଵ = 𝑎ଶ = 0.1). 

 

The validity of the approximate solution should be expected to be restricted on bounded 

intervals of the 𝑡-variable and then on time-scale 𝑡 = 𝑂 ቀ
ଵ

ఌమ
ቁ. If one wishes to construct 

approximate solutions on larger intervals such that 𝑡 = 𝑂 ቀ
ଵ


ቁ then the higher terms will in general 

affect the solution and must be included (see Section 2). Moreover, the approximate solution (24-

25) and (26-27) will be within 𝑂(𝑒) of the true solution on bounded intervals of the𝑡-variable, 

and, if the solution is periodic, for all t. 

 

3. The complex-valued van der Pol oscillator 
The complex-valued van der Pol oscillator correspond to two coupled nonlinear differential 

equations: 

 

�̈� + 𝜔ଶ𝑋 + 𝑎ସ�̇� + 𝑎 ቀ(𝑋ଶ − 𝑌ଶ)�̇� − 2𝑋𝑌�̇�ቁ = 0      (31)  
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�̈� + 𝜔ଶ𝑌 + 𝑎ସ�̇� + 𝑎 ቀ(𝑋ଶ − 𝑌ଶ)�̇� + 2𝑋𝑌�̇�ቁ = 0       (32) 

 

With the substitution 𝑎ସ → 𝜀ଶ𝑎ସ, 𝑎 → 𝜀ଶ𝑎, equation (2) yields the nonlinear system 
ௗట

ௗఛ
= −

ଵ

ଶ
𝑎ସ𝜓 −

ଵ

ଶ
𝑎𝜓ଶ𝜙,             (33) 

 
ௗథ

ௗఛ
= −

ଵ

ଶ
𝑎ସ𝜙 −

ଵ

ଶ
𝑎ψϕଶ.            (34) 

 or with the substitution (16) 

𝜌ఛ = −
ర

ଶ
𝜌 −

ల

ଶ
𝜌ଶ𝜒cos(𝜗 + 𝛼),          (35) 

𝜒ఛ = −
ర

ଶ
𝜒 −

ల

ଶ
ρχଶcos(𝜗 + 𝛼),          (36) 

𝜗ఛ = −
ల

ଶ
ρχsin(𝜗 + 𝜙),           (37) 

𝛼ఛ = −
ల

ଶ
ρχsin(𝜗 + 𝜙),           (38) 

We can see from equations (35-36) that 
ఘ

ఞ
=

ఘబ

ఞబ
 = cost ,             (39) 

where 𝜌 and 𝜒 are the initial conditions. 

The only acceptable solution for steady-state finite amplitude solutions are given by (a4<0 and a6>0 

as in the standard van der Pol oscillator) 

  𝜗 + 𝛼 = 0,   𝜌𝜒 = −
ర

ల
.         (40) 

The stability properties of the above illustrated fixed-point solutions are examined by applying the 

well-known method of linearization. We superpose small perturbations in the steady state solution 

and the resulting equations are then linearized. Subsequently we consider the eigenvalues of the 

corresponding system of first order differential equations with constant coefficients (the Jacobian 

matrix). A positive real root indicates an unstable solution, whereas if the real parts of the 

eigenvalues are all negative then the steady state solution is stable.  

The eigenvalues of the Jacobian matrix of the nonlinear system (35-38) are all negative for the 

standard choice 

𝑎ସ < 0, 𝑎 > 0.            (41) 

The first order approximate periodic solution is given by 

𝑋(𝑡) = 𝜌cos(𝜔𝑡 − 𝜗) −
ర

లఘబ
cos(𝜔𝑡 + 𝛼),        (42a) 

𝑌(𝑡) = −𝜌sin(𝜔𝑡 − 𝜗) −
ర

లఘబ
sin(𝜔𝑡 + 𝛼) .      (42b) 

or  

𝑧(𝑡) = 𝜌exp൫−𝑖(𝜔𝑡 − 𝜗)൯ + 𝜒exp൫𝑖(𝜔𝑡 + 𝛼)൯.      (43) 
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In Fig. 2 we show a comparison between the approximate solution (42) and the numerical solution of 

the same motion. We represent a projection of the associated map of the equation (2), obtained with 

the values (X(0),Y(0)), (X(T),Y(T)), (X(2T),Y(2T)), ....., where T is the period, 

𝑇 =
ଶగ

ఠ
.                 (44) 

Crosses represent the approximate solution and boxes represent the numerical solution. The 

characteristic closed curve reveals that the motion is periodic (𝜌 = 0.5, 𝜒 = 0.8, 𝜔 = 1, 𝑎ସ =

−0.1, 𝑎 = 0.1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Projection on the (X(t), Y(t)) plane of the associated map of the complex-valued system 

(2). Crosses are the approximate solution and boxes the numerical solution.  
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4. The complex-valued gyroscopic function 
The complex-valued gyroscopic function corresponds to two coupled nonlinear differential 

equations: 

 

�̈� + 𝜔ଶ𝑋 + 𝑎ଷ(𝑋ଶ + 𝑌ଶ)𝑋 − 𝑎ହ�̇� − 𝑎(𝑋ଶ + 𝑌ଶ)�̇� = 0 ,    (45)  

 

�̈� + 𝜔ଶ𝑌 + 𝑎ଷ(𝑋ଶ + 𝑌ଶ)𝑌 + 𝑎ହ�̇� − 𝑎(𝑋ଶ + 𝑌ଶ)�̇� = 0     (46) 

With the substitution 𝑎ଷ → 𝜀ଶ𝑎ଷ, 𝑎ହ → 𝜀ଶ𝑎ହ, 𝑎 → 𝜀ଶ𝑎, equation (3) yields the nonlinear system 

𝑖
ௗట

ௗఛ
=

య

ଶఠ
(|𝜓|ଶ + |𝜙|ଶ)𝜓 +

ఱ

ଶ
𝜓 +

ଵ

ଶ
𝑎(|𝜓|ଶ + |𝜙|ଶ)𝜓,      (47) 

𝑖
ௗథ

ௗఛ
= −

య

ଶఠ
(|𝜓|ଶ + |𝜙|ଶ)𝜙 +

ఱ

ଶ
𝜙 +

ଵ

ଶ
𝑎(|𝜓|ଶ + |𝜙|ଶ)𝜙,     (48) 

 or with the substitution (16) 

𝜌ఛ = 0, 𝜌 = 𝜌 , 𝜒ఛ = 0,  𝜒 = 𝜒 ,         (49) 

𝜗ఛ = − ቀ
య

ଶఠ
+

ళ

ଶ
ቁ (𝜌

ଶ + 𝜒
ଶ) −

ఱ

ଶ
= 𝛺ଵ,        (50) 

𝑋(𝑡) = 𝜌cos൫(𝜔 − 𝛺ଵ)𝑡 − 𝜗൯ + 𝜒cos൫(𝜔 + 𝛺ଶ)𝑡 + 𝛼൯     (51) 

where 𝜌 and 𝜒 are the initial conditions.  

The first order approximate periodic solution is given by 

𝑋(𝑡) = 𝜌cos൫(𝜔 − 𝛺ଵ)𝑡 − 𝜗൯ + 𝜒cos൫(𝜔 + 𝛺ଶ)𝑡 + 𝛼൯,       (52) 

𝑌(𝑡) = −𝜌sin൫(𝜔 − 𝛺ଵ)𝑡 − 𝜗൯ + 𝜒sin൫(𝜔 + 𝛺ଶ)𝑡 + 𝛼൯ .     (53) 

or  

𝑧(𝑡) = 𝜌exp ቀ−𝑖൫(𝜔 − 𝛺ଵ)𝑡 − 𝜗൯ቁ + 𝜒exp ቀ𝑖൫(𝜔 + 𝛺ଶ)𝑡 + 𝛼൯ቁ.    (54) 

 In general we see from (54) that we get a two period quasi-periodic motion, but if the following 

Diophantine relation  

𝜔 − 𝛺ଵ =



(𝜔 + 𝛺ଶ),              (55) 

is verified (p and q are integers), then motion is simply periodic. Equation (55) with (50) and (51) 

yields 

𝜌
ଶ + 𝜒

ଶ = 𝜔
(ଶఠିఱ)ି(ఱାଶఠ)

(ఠళିయ)ା(ఠళାయ)
         (56) 

In the plane (𝜌, 𝜒) we find infinite circles with radius given by the square root of the r.h.s.. If the 

initial conditions are on these circles, the corresponding solution is periodic. 

We list the most simple solutions 

𝑝 = 𝑞 = 1   𝜌
ଶ + 𝜒

ଶ = −
ఱ

ళ
,            (57) 

𝑝 = 2, 𝑞 = 1   𝜌
ଶ + 𝜒

ଶ = ቀ
ଶఠିଷఱ

ଷళఠିయ
ቁ 𝜔,         (58) 
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𝑝 = 1, 𝑞 = 2   𝜌
ଶ + 𝜒

ଶ = − ቀ
ଷఱାଶఠ

ଷళఠାయ
ቁ 𝜔,     (59) 

𝑝 = 1, 𝑞 = 3   𝜌
ଶ + 𝜒

ଶ = −2 ቀ
ఱାఠ

ଶళఠାయ
ቁ 𝜔,     (60) 

𝑝 = 3, 𝑞 = 1   𝜌
ଶ + 𝜒

ଶ = 2 ቀ
ఠିఱ

ଶళఠିయ
ቁ 𝜔,     (61) 

𝑝 = 2, 𝑞 = 3   𝜌
ଶ + 𝜒

ଶ = − ቀ
ଶఠାହఱ

ହళఠାయ
ቁ 𝜔,     (62) 

𝑝 = 3, 𝑞 = 4   𝜌
ଶ + 𝜒

ଶ = − ቀ
ଶఠାఱ

ళఠାయ
ቁ 𝜔,     (63) 

𝑝 = 4, 𝑞 = 5   𝜌
ଶ + 𝜒

ଶ = − ቀ
ଶఠାଽఱ

ଽళఠାయ
ቁ 𝜔,     (64) 

For example, we consider the case (64) with a3=0.1, a5=a7=-0.1, 𝜔 = 1, with 

𝜌
ଶ + 𝜒

ଶ = 1.375, 𝜌 = 0.857, 𝜒 = 0.800.       (65) 

In Fig. 3 we show a comparison between the approximate solution (52-53) and the numerical 

solution of the same motion. We represent a projection of the associated map of the equation (3), 

obtained with the values (X(0),Y(0)), (X(T),Y(T)), (X(2T),Y(2T)), ....., where T is the period, 

𝑇 =
ଶగ

ఠିఆభ
.             (66) 

Crosses represent the approximate solution and boxes represent the numerical solution. The 

characteristic closed curve reveals that the motion is periodic,  

𝜔 − 𝛺ଵ =
ସ

ହ
(𝜔 + 𝛺ଶ).         (67) 

The agreement of the results is excellent, because the maximum difference is 0.1 and the medium 

difference is 0.07, i.e. of order 𝑒 as expected.  
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FIGURE 3: Projection on the (X(t), Y(t)) plane of the associated map of the complex-valued system 

(3). Crosses are the approximate solution and boxes the numerical solution.  

 

In Fig.4 we show a two period quasi-periodic motion corresponding to 

𝜌 = 0.857, 𝜒 = 0.900            (68) 

Note that the condition (56) is not verified. 
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FIGURE 4: Projection on the (X(t), Y(t)) plane of the associated map of the complex-valued system 

(3). Crosses are the approximate solution and boxes the numerical solution.  

 

5. Conclusion 
Three complex-valued nonlinear systems (quadratic and cubic nonlinearity, van der Pol, gyroscopic 

oscillator) have been investigated by an asymptotic perturbation method based on Fourier expansion 

and time rescaling. Four coupled equations for the amplitude and the phase of solutions have been 

derived. We have demonstrated that in the first two cases the motion is periodic, while in the third 

case the motion is periodic only if appropriate Diophantine relations are satisfied. Analytic 

approximate solutions have been checked by numerical integration. 

A direct extension of this work can be given by the introduction of other nonlinear terms or 

resonances (for example the fundamental 1:1 or the principal 1:2 resonances). 
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