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Abstract 
Self-excitations can be dangerous in many nonlinear systems and can produce catastrophic 

failures, that is a sudden and complete failure that cannot be put right. We extend the nonlocal 

vibration control to the suppression of the self-excited vibrations of the Liènard system. We 

introduce a non local control force that yields a third order non-linear differential equation and 

use a nonlocal active control to mitigate the amplitude peak in the self-excitations. The 

nonlocal parameters can be carefully adjusted, in order to avoid undesirable behavior and 

dynamical nonlinear excitations.  We consider the effects of changing the nonlocal parameters 

on the stability and the value of the response of the system under control. We demonstrate that 

our method can successfully improve the self-excitation active control, studying a Liènard 

system through the (AP) asymptotic reduction method. A nonlocal force can be used to 

suppress self-excitations and put under control the oscillator behavior. 

 

Keywords:  : Liènard system, vibration control, active control, reduction method, self-

excitations 

1. Introduction 
Nonlinear ordinary differential equations can describe many physical phenomena and moreover 

sometimes they can be symmetry reductions of nonlinear partial differential equations [1]. Self 

excitations are common in these systems. 

Let f and g be two continuously differentiable functions on R with f an odd function and g a 

generic function. The Liènard equation is a second-order differential equation in the following form 
ௗమ௑

ௗ௧మ
+ 𝑔(𝑋)

ௗ௑

ௗ௧
+ 𝑓(𝑋) = 0                    (1.1) 

For instance, The well known van der Pol oscillator is a Liènard system 

Under certain additional assumptions the Liènard theorem ensures the uniqueness and existence of 

a limit cycle for such a system. In particular, a Liènard system has a unique and stable limit cycle 

surrounding the origin if it satisfies the following additional properties 



Attilio Maccari                             Journal for Foundations and Applications of Physics, vol. 9, No. 2 (2022) 

34 
 

(i) g(x) >0 for all x>0; 

(ii) F(x) has exactly one positive root at some value ρ, where F(x)<0 for 0<x<ρ and F(x)>0 and 

monotonic for x>ρ, 

where 

𝐹(𝑥) = ∫ 𝑓
௫

଴
(𝜌)𝑑𝜌                     (1.2) 

and 

𝑙𝑖𝑚
௫→ஶ

𝐹 (𝑥) = ∞                       (1.3) 

 

Not so many papers are devoted to this topic, vibration control for self-excited Liènard systems so 

we mention a few papers about similar issues. J. Warminski et al. [2] perform an active vibration 

control in a nonlinear beam with self- and external excitations. Using the nonlinear saturation control 

(NSC) algorithm and multiple time scales  method they can find a first order approximate solution 

and compare it with numerical solution. Y. J. F. Kpomahou [3] et al. investigated the nonlinear 

dynamics and active control in a Liènard system under parametric and external excitations. It is 

found that for an appropriate choice of the gain parameter, then the chaotic behavior is completely 

removed. Maccari A. [4] used a traditional control method based upon time delay state feedback for 

a parametrically excited Liènard system in order to reduce the amplitude peak of the parametric 

resonance and to exclude the existence of two-period quasi-periodic motion, he finds the appropriate 

choices for the nonlocal parameters and the time delay. Xu and Lu studied the Hopf bifurcation of 

time delayed Liènard systems [5]. Yoshitake et al.[6]  investigated the vibration of a forced self-

excited system with time delay finding many important characteristics. Maccari investigated the 

fundamental [7] and the primary [8] resonance of a van der Pol system and found that the vibration 

control and high amplitude response suppression are possible using the state feedback control with a 

time delay. Belhaq and Sa [9] shown that a fast vertical parametric excitation can be used to suppress 

self-excitations in a delayed van der Pol oscillator. 

The term jerk dynamics for the third–order differential equations in the case that the dependent 

variable the displacement was introduced by Schot [10]. Maccari [11, 12, 13] investigated the 

nonlocal oscillator, i.e. an oscillator subjected to a nonlocal force that is equivalent to a third order 

differential equation. He used an asymptotic perturbation techniques which combine the harmonic 

balance procedure and the method of multiple time scales. Linz studied the connection between 

one–dimensional jerk dynamics and nonlinear dynamical systems in three–dimensional phase 

space [14, 15]. Gottlieb [16] found periodic solutions and limit cycles [17-18] for some simple 

jerk equations by means of harmonic balance methods. Wu et al. [19] proposed an improved 

harmonic balance method for nonlinear jerk equations, while Ma et al. [20] and Hu [21] used a 

first–order harmonic balance procedure with a parameter perturbation technique 

In this paper, a novel strategy for suppressing the self-excitations of Liènard systems (1.1) is 

investigated. 
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The paper is arranged as follows. In Section 2 we consider the Liènard system (1.1) with a 

nonlocal vibration control term and use the asymptotic perturbation (AP) method [4] in order to 

obtain analytic approximate solutions. Three steps are used by the AP method, i) introducing a 

slow time scale, ii) obtaining the form of solution in terms of harmonic components, and iii) 

solving directly for the various harmonic components via harmonic balance. We can use a 

standard procedure to derive increasingly accurate solutions by increasing the order of 

approximation in terms of the small parameter . The first-order approximate solution is identical 

to that obtainable with the other perturbation methods. We underline that there may be other 

solutions, which the slow flow equations do not describe (for example large-amplitude quasi-

periodic motion or chaotic behavior,). The most useful characteristics of harmonic balance and 

multiple scale methods are used by means of the AP method. 

Two slow-flow equations on the amplitude and the phase are obtained. Steady state solutions 

(corresponding to periodic motion) and their stability are discussed. 

In Section 3 the nonlocal parameters are chosen by analysing the modulation equations of the 

amplitude and the phase. We consider the effects of changing the nonlocal parameters on the 

value of the response of the system under control. We demonstrate that, from the viewpoint of 

vibration control, a correct choice of the nonlocal parameters can enhance the control 

performance and suppress the amplitude peak of the self-excited response in Liènard systems. 

Finally, in the Section 4, we summarise the most important results and indicate some possible 

extensions and generalisations. 

 

2. The mathematical framework 
In particular we study a Lienard system where 

𝑓(𝑋) = 𝑓ଷ𝑋
ଷ                                (2.1) 

and 

𝑔(𝑋) = −𝑔଴ − 𝑔ଵ𝑋 − 𝑔ଶ𝑋
ଶ                         (2.2) 

and study the integro-differential equation 
ௗమ௑

ௗ௧మ
+ 𝑔(𝑋)

ௗ௑

ௗ௧
+ 𝑓(𝑋) = 𝐹ே௅(𝑡) = ∫ (𝐴𝑋 + 𝐵𝑋ଶ + 𝐶𝑋ଷ)

௧

௢
𝑑𝑡′        (2.3) 

where  𝐹ே௅(𝑡)is the nonlocal force and A, B, C appropriate control parameters. The integro-

differential (2.3) is equivalent to 

ௗయ௑

ௗ௧య
+

ௗ௙

ௗ௑

ௗ௑

ௗ௧
+

ௗ௚

ௗ௑
ቀ
ௗ௑

ௗ௧
ቁ
ଶ

+ 𝑔(𝑋)
ௗమ௑

ௗ௧మ
= (𝐴𝑋 + 𝐵𝑋ଶ + 𝐶𝑋ଷ)           (2.4) 

with initial conditions 
ௗమ௑

ௗ௧మ
(𝑡 = 𝑡଴) + 𝑓(𝑋଴) + 𝑔(𝑋଴)

ௗ௑

ௗ௧
(𝑡 = 𝑡଴) = 0                (2.5) 

The nonlocal force includes the whole precedent temporal evolution of a given particle, and not only 

its actual position. Using the AP method we assume weak damping and linear and quadratic nonlocal 

parameters and scale the coefficients, 
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(𝑓଴, 𝐴, 𝐵) → 𝜀ଶ(𝑓଴, 𝐴, 𝐵),                (2.6) 

where ε is a small nondimensional parameter that is artificially introduced to serve as 

bookkeeping device and will be set equal to unity in the final analysis. 

Now we can introduce the slow variable 

𝜏 = 𝜀ଶ𝑡,                       (2.7) 

In other words, we need to look on larger scales, to get a non negligible contribution by 

nonlinear and control terms. 

The solution X(t) of equation (2.4) can be expressed by means of a power series in the 

expansion parameter , 

𝑋(𝑡) = ∑ 𝜀ఊ೙𝜓௡(𝜉; |𝜀)exp(−in𝜔𝑡),ାஶ
௡ୀିஶ                  (2.8) 

where 𝛾௡ = |𝑛| for 𝑛 ≠ 0, 𝛾଴ = 2 and 𝜓௠(𝜏, 𝜀) = 𝜓ି௠~ (𝜏, 𝜀). 

Equation (2.8) can be written more explicitly 

𝑋(𝑡) = 𝜀ଶ𝜓଴(𝜏; 𝜀) + 𝜀(𝜓ଵ(𝜏; 𝜀)exp(−𝑖𝜔𝑡) + 𝑐.𝑐.) + ℎ.𝑜.𝑡.,         (2.9) 

where h.o.t. = higher order terms and c.c. stands for complex conjugate of the preceding terms. 

The functions 𝜓௡(𝜏, 𝜀) depend on the parameter  and we suppose that the limit of the 𝜓௡ for 𝑒 → 0 

exists and is finite and moreover they can be expanded in power series of  , i.e. 

𝜓௡(𝜏; 𝜀) = ∑ 𝜀௜ஶ
௜ୀ଴ 𝜓௡

(௜)(𝜏).                 (2.10) 

In the following for simplicity we use the abbreviations 𝜓௡
(଴)

= 𝜓௡ for 𝑛 ≠ 1 and 𝜓଴
(଴)

= 𝜒 for 

n=0. In the lowest order calculations, only the functions corresponding to i=0 appear. 

The solution is then a Fourier expansion in which the coefficients vary slowly in time and the 

lowest order terms correspond to the harmonic solution of the linear problem. Evolution equations 

for the amplitudes of the harmonic terms are then derived by substituting the expression of the 

solution into the original equations and projecting onto each Fourier mode. 

For n=1 we obtain the linear equation (order 𝜀2) 

−2𝜔ଶ𝜓ఛ − 3𝑖𝜔𝑓ଷ|𝜓|
ଶ𝜓 + 𝑔଴𝜔

ଶ𝜓 + 5𝑔ଶ𝜔
ଶ|𝜓|ଶ𝜓 − 𝑔ଵ𝜔

ଶ(𝜓ଶ𝜓~) + 𝑔ଵ𝜔
ଶ𝜒𝜓 = 0.  (2.11) 

For n=2 we get 

𝜓ଶ = 𝑖𝛾ଶ𝜓   𝛾ଶ =
ସ௚భ

ଷఠ
                  (2.12) 

Considering equation (1.1) for n=0  yields (order 𝜀) , we obtain 

𝜔ଶ𝜒ఛ = 𝐴𝜒 + 2𝐵|𝜓|ଶ,                 (2.13) 

We can derive a differential equation for the evolution of the complex amplitude𝑦, 

𝜓ఛ = 𝛼ଵ𝜓 + (𝛽ଵ + 𝑖𝛾ଵ)|𝜓|
ଶ𝜓 + 𝛿𝜒𝜓,           (2.14a) 

𝜒ఛ = 𝛼𝜒 + 𝛽𝜌ଶ,                 (2.14b) 

where 

𝛼 =
஺

ఠమ
,     𝛽 =

ଶ஻

ఠమ
, 𝛾ଵ =

ିଷ௙య

ଶఠ
                (2.15) 

𝛼ଵ =
௚బఠ

మି஺

ଶఠమ
,       𝛿 =

௚భ

ଶ
,  𝛽ଵ = 2𝑔ଶ −

ଷ஼

ଶఠమ
+

ଶ௚భ
మ

ଷఠ
          (2.16) 

Expressing the complex-valued function 𝜓 into real and imaginary parts, we obtain 
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𝛹(𝜏) = 𝜌(𝜏)exp൫𝑖𝜗(𝜏)൯,                   (2.17) 

and arrive at the model equations 
ௗఘ

ௗఛ
= 𝛼ଵ𝜌 + 𝛽ଵ𝜌

ଷ + 𝛿ଶ𝜒𝜌,                   (2.18) 

ௗఏ

ௗఛ
= 𝛾ଵ𝜌

ଶ,                          (2.19) 

ௗఞ

ௗఛ
= 𝛼𝜒 + 𝛽𝜌ଶ.                       (2.20) 

From equations (2.8), (2.10) and (2.17) we can express the field X(t) to the second 

approximation as 

𝑋(𝑡) = 2ερ(𝜏)cos൫𝜔𝑡 − 𝜗(𝜏)൯ + 𝜀ଶ𝜒(𝜏),   (2.21) 

where 𝜌 and 𝜃 and 𝜒are given by Equations (2.18-2.19-2.20). 

Moreover, the approximate solution is asymptotically exact, i.e. valid on bounded intervals of 

the 𝜏-variable and on t-scale 𝑧 = 𝑂(1 𝜀ଶ⁄ ). If one wishes to construct solutions on intervals such 

that 𝜏 = 𝑂(1 𝜀⁄ ), then the higher terms must be included, because they will in general affect the 

solution. 

Periodic solutions of the complete system described by equation (2.4) correspond to the fixed 

points of equations (2.18-2.20), which are obtained by the conditions 𝑑𝜌 𝑑𝜏⁄ = 𝑑𝜒 𝑑𝜏⁄ = 0. 

The trivial solution is possible, but steady-state self-excitations responses exists and the 

equilibrium points 𝜌ௌ, 𝜒ௌ are given by 

𝜌ா = ඨ𝐴
(௚బఠమି஺)

ସ஺௚మఠమିଷ஺஼ିଶ஻௚భఠమା
ర

య
஺ఠ௚భ

మ
,                   (2.22) 

𝜃 = 𝛾ଵ𝜌ா
ଶ𝜏 + 𝜃଴,                        (2.23) 

𝜒ா = −ቀ
ଶ஻

஺
𝜌ா
ଶቁ                        (2.24) 

where the expression inside the root square must be non negative. 

In order to establish the stability of steady state solutions, we superpose small perturbations in 

the amplitudes and the phases on the steady state solutions and the resulting equations are then 

linearized. Subsequently we consider the eigenvalues of the corresponding system of first order 

differential equations with constant coefficients (the Jacobian matrix). A positive real root 

indicates an unstable solution, whereas if the real parts of the eigenvalues are all negative then the 

steady state solution is stable. 

The eigenvalue equation is 

𝜆ଶ − 2𝜆𝜌ா(𝛽 + 𝛽ଵ𝜌ா) − ൫2𝛽𝜌ா(𝛿𝜌ா)൯ = 0,            (2.25) 

where 

𝜆ଵ = 𝜌ா(𝛽 + 𝛽ଵ𝜌ா) + ඥ(4𝛼𝛿𝜌ா + 𝜌ா
ଶ(𝛽 + 𝛽ଵ𝜌ா)

ଶ),        (2.26) 

. 𝜆ଵ = 𝜌ா(𝛽 + 𝛽ଵ𝜌ா) − ඥ(4𝛼𝛿𝜌ா + 𝜌ா
ଶ(𝛽 + 𝛽ଵ𝜌ா)

ଶ)          (2.27) 

and then the condition λ1, λ2<0, is requested for the stability of the solution (2.22-2.24). 
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2. The nonlocal vibration control 
We study three cases: 

(i) the nonlocal vibration control with 𝐴 ≠ 0, B=C=0. In this case, we obtain 

𝜌ௌ =
ඥ஺(௙బఠమି஺)

ସ஺ మఠమା
ర

య
஺ఠ௙భ

మ
,   𝜒ௌ = 0.              (3.1) 

We observe in Fig. 1, compared with the numerical solution, that if the control term A increases 

then we can reduce and eventually suppress the amplitude of the self-excitation for 

𝐴 = 𝑓଴𝜔
ଶ.                   (3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 Stable self-excitation amplitude for the nonlocal vibration control with g0=0.02, 

g1=0,9, g2=f3=1,1, ω=1, B=C=0.  The nonlocal parameter A varies from 0.001 to 0.02. The 

upper curve is the theoretical prevision, the lower curve comes from numerical simulation 

 

(ii) the nonlocal vibration control with 𝐴, 𝐵 ≠ 0, C=0. The value of the self-excitation 

amplitude changes accordingly, see Fig. 2, compared with the numerical solution, but it is 

also present an excitation of the zero mode, 

𝜌ௌ =
ඥ஺(௙బఠమି஺)

ସ஺ మఠమିଶ஻௙భఠమା
ర

య
஺ఠ௙భ

మ
 ,   𝜒ௌ =

ିଶ஻ఘಶ
మ

஺
.               (3.3) 
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Figure 2 Stable self-excitation amplitude for the nonlocal vibration control with g0=0.02, 

g1=0,9, g2=f3=1,1, ω=1, A=0,01, C=0. The nonlocal parameter B varies from -0.05 to 0. The 

uppe curve is the theoretical prevision, the lower curve comes from numerical simulation 

 

(iii) the generic delay feedback control with 𝐴, 𝐵, 𝐶 ≠ 0. In this case (see Fig. 3 for 𝜌ௌ and Fig. 

4 for𝜒ௌ, both compared with numerical solution), we obtain the equations (2.22-2.24). In 

this case the choice (3.2) eliminates both the self-excitation 𝜌ௌ and the zero-mode 

amplitude 𝜒ௌ, but the steady-sate solution is also dependent on the control terms B and C. 

The asymptotic approximate solution is 

𝑋(𝑡) = 2𝜌ௌcos(𝜔𝑡 − 𝜗) + 𝜒ௌ,                 (3.4) 

where ϑ is given by (2.21) 

 

 

 

 

 

 



Attilio Maccari                             Journal for Foundations and Applications of Physics, vol. 9, No. 2 (2022) 

40 
 

Figure 3 Stable self-excitation amplitude for the nonlocal vibration control with g0=0.02, 

g1=0,9, g2=f3=1,1, ω=1, A=0,01, B=0,015. The nonlocal parameter C varies from -2 to 0. The 

upper curve is the theoretical prevision, the lower curve comes from numerical simulation 

 

 

Figure 4 Stable zero-mode amplitude for the Nonlocal vibration control with g0=0.02, 

g1=0,9, g2=f3=1,1, ω=1, A=0.01, B=0,015. The nonlocal parameter C varies from -2 to 0. 

The upper curve is the theoretical prevision, the lower curve comes from numerical simulation 

 

 

From the previous figures we conclude that appropriate choices for the nonlocal parameters 

can accomplish a successful control strategy for the suppression of the self-excitation of the 

Liènard system. 
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4. Conclusion 
We have investigated a new method for the suppression of the self-excited vibrations based upon a 

nonlocal force that produces a jerk dynamics. We have considered a generic Liènard system with a 

nonlocal control force. Using the asymptotic perturbation method, we have obtained two slow flow 

equations on the amplitude and phase of the response and subsequently investigated the performance 

of the control strategy. We have demonstrated that the amplitude peak of the self-excitation can be 

suppressed and found the appropriate choices for the nonlocal parameters. This new method can be 

applied to the vibration control of many other nonlinear systems even with two or more degrees of 

freedom and we wil study this topic in future papers. 
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