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Abstract 

We consider a weakly nonlinear oscillator with a fractal forcing, given by the Weierstrass 

function, and use the asymptotic perturbation (AP) method to study its behavior.  Being this 

function nowhere differentiable we can only use adequate approximations. We find that while 

in the linear case the resulting motion is a simple superposition between the fractal forcing and 

the standard oscillation, on the contrary in the nonlinear case the oscillator phase and its 

frequency also become fractal. We obtain the Poincarè sections in various cases and all 

theoretical findings are corroborated with numerical simulation. 

 

Keywords:  fractal; nonlinear oscillator; perturbation method; Weierstrass function 

1. Introduction 

Fractals and self-similarity helped our understanding of the universe and from the Mandelbrot 

pioneering work they are a huge research field for physics [1-5]. In the last years a lot of research 

effort has been devoted to fractional oscillator processes [6-10]. In particular, two types of fractional 

oscillator processes, namely the Weyl or the Riemann-Liouville (RL) type, have been considered 

recently [6]. it is well known that the Weyl fractional oscillator process is a stationary Gaussian 

process. Its spectral density is given by a simple closed expression.  

On the contrary, the RL-fractional oscillator process is a non-stationary process and the covariance 

function can be given by a complicated expression. Researchers increased their use of fractional 

dynamics in order to study various transport phenomena in complex and disordered media [7-10]. 

Our goal in this paper is to understand how the self-similarity interact with a weakly nonlinear 

oscillator without fractional dynamics. 

We study a weakly nonlinear oscillator with quadratic and cubic nonlinearities but with a peculiar 

external forcing term 

𝑋̈ + 𝜔2𝑋 = 𝑏𝑋2 + 𝑐𝑋3 +𝑊(𝑡)               (1) 

where we have chosen a Weierstrass function W(t)  
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𝑊(𝑡) = ∑ 𝐴𝑛∞
𝑛=1 𝑐𝑜𝑠(𝐵𝑛𝛺𝑡) .              (2a) 

It is well known that this function is continuous but nowhere differentiable if  

0 < 𝐴 < 1 𝐴𝐵 > 1                  (2b) 

The Weierstrass function with A=0.5, B= 4.0, Ω=φ=the golden mean=1.618033 989… is shown in 

Fig. 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The Weierstrass function with A=0.5, B=4.0 N=15 

 

In the next Section we will try to produce an approximate solution for this fractal oscillator, trying 

to understand the most important differences with the linear case. 

 

2. The asymptotic perturbation method 

We want to consider a weakly nonlinear oscillator with a fractal forcing, given by the Weierstrass 

function (1), and use the asymptotic perturbation (AP) method [11] to study its behavior.  The first 

step for the AP method is to introduce a slow time 

𝜏 = 𝜀𝑞𝑡,                  (3) 

where 𝑞 > 0 will be chosen in the following and ε is a simple book keeping device. We now build 

a solution of Equation (2) using this harmonics superposition  

𝑋(𝑡) = (𝜓1(𝜏)exp(−𝑖𝛺𝑡) + 𝜓0(𝜏)𝜀 + 𝜓2(𝜏)𝜀exp(−2𝑖𝜔𝑡) + 𝑐.𝑐.) + 𝑂(𝜀2),      (4) 

where the harmonics coefficients are depending on the slow time . 

We observe that the introduction of the slow time (3) implies  

𝑑

dt
(𝜓𝑛exp(−in𝜔𝑡)) = (−in𝛺𝜓𝑛 + 𝜀𝑞

𝑑𝜓𝑛

𝑑𝑡
) exp(−in𝜔𝑡).      (5) 

Using Equation (4) and substituting into Equation (2) yields various equations for each harmonic n 

and for a fixed order of approximation on the perturbation parameter . 

For n=1, we get 


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−2𝑖𝜔𝜓𝜏𝜀
𝑞 = (2𝑏)𝜓0𝜓𝜀𝜀

𝑟 + (2𝑏)𝜓2𝜓−1𝜀
2 + 3𝑐|𝜓|2𝜓𝜀2      (6) 

and, after setting q=2, r=1 for an adequate terms balance, we get for n=0, with 𝛷 = 𝜓0 

𝛷 =
1

𝜔2
𝑊(𝜏) +

2𝑏

𝜔2
|𝜓|2             (7) 

for n=2 

 𝐴2 =
−𝑏

3𝜔2 ,   𝜓2 = 𝐴2𝜓
2             (8) 

Taking into account Equations (1) and (5), we can obtain a differential equation for the evolution 

of the complex amplitude 𝜓,  

𝑑𝜓

𝑑𝑡
= (𝑖𝛼1)𝜓𝛷 + (𝑖𝛽1)|𝜓|

2𝜓,           (9) 

with 

  𝛼1 =
𝑏

𝜔
,                  (10) 

  𝛽1 =
3𝑐

2𝜔
−

𝑏2

3𝜔3.                (11) 

Using the polar form, 

𝜓(𝜏) = 𝜌(𝜏)exp(𝑖𝜃(𝜏)),              (12) 

into Equation (9), and separating real and imaginary parts, we easily get  the following model system 
𝑑𝜌

𝑑𝑡
= 0                    (13) 

𝑑𝜃

𝑑𝑡
= 𝛼1𝛷 + 𝛽1𝜌

2.                 (14) 

Considering Equations (4), (7), (8) and (12), the lowest order approximate solution of Equation (2) 

can be written as  

𝑋(𝑡) = 2𝜌𝑐𝑜𝑠(𝜔𝑡 − 𝜗) + 𝛷 + 2𝐴2𝜌
2𝑐𝑜𝑠(−2𝜔𝑡 + 2𝜃) + 𝑂(𝜀2).     (15) 

and Φ is given by Equation (7).  

We underline this result does not depend on the peculiar external forcing form, but the point here is 

that its infinite Fourier components mix up in order to produce a motion characterized by infinite 

frequencies. Without the nonlinear terms this result is not possible and in the linear case b=c=0 we 

get a pure two period quasiperiodic motion, that is a closed curve in the Poincarè section. The 

validity of the approximate solution should be expected to be restricted on bounded intervals of the 

𝑡-variable and then on time-scale 𝑡 = 𝑂 (
1

𝜀
). If one wishes to construct approximate solutions on 

larger intervals such that 𝑡 = 𝑂 (
1

𝜀
) then the higher terms will in general affect the solution and must 

be included. Moreover, the approximate solution (22) should be within 𝑂(𝜀) of the true solution on 

bounded intervals of the 𝑡-variable. However, we can trust excessively this approximate solution, 

because we neglected the fundamental resonance Fourier component of the external forcing. This 

component should be inserted into Equation (6) and the solution can become unstable if the external 

forcing is too strong. 

The system (13-14) can be easily solved 

𝜌(𝑡) = 𝜌0 = 𝑐𝑜𝑛𝑠𝑡               (16) 
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𝜃(𝑡) = 𝛽1𝜌0
2𝑡 + 𝛼1 ∫ 𝛷

𝑡

0
(𝑡′)𝑑𝑡′.             (17) 

We underline the integral 

𝐼(𝑡) = 𝛼1 ∫ 𝑊
𝑡

0
(𝑡′)𝑑𝑡′             (18) 

in (17) cannot be written with elementary functions and the same for the approximate solution and its 

derivative. 

 

3. Numerical simulation 

If we consider the oscillator (1) at the time t=k T, where T is the golden mean period 

3,883022077.. seconds and k a positive integer, we can conclude that this solution is not clearly a 

closed curve, because there are infinite frequencies coming from the external forcing in the equation 

(2).  

We show the Poincare sections for the fractal oscillator (1) and consider a finite number of 

harmonics in the Weierstrass function in equation (2a), in order to perform the numerical simulation, 

 𝑊𝑆(𝑡) = ∑ 𝐴𝑛𝑁
𝑛=1 𝑐𝑜𝑠(𝐵𝑛𝛺𝑡)             (19) 

where N=15.  

We show several remarkable cases (𝑌 = 𝑋̇) for the Poincarè sections for the nonlinear and fractal 

oscillator (1). If not specified the initial conditions are given by X0=Y0=0.88. 

In Figure 2 (ω=1, b=0.0, c=0.0, A=0.5, B=4, Ω=golden mean, N=15) we represent the linear case.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 (ω=1, b=0.0, c=0.0, A=0.5, B=4, Ω=golden mean, N=15) 

 

The Poincarè section is obviously a closed curve and we observe a quasiperiodic motion for the 

oscillator. 

 In Figure 3 (ω=1, b=-0.1, c=0.02, A=0.5, B=4, Ω=golden mean, N=15) we get a fractal attractor.  
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Figure 3 (ω=1, b=-0.1, c=0.02, A=0.5, B=4, Ω=golden mean, N=15) 

 

We understand from the equation (17) that even the phase is fractal and Figure 4 is a magnified 

portion of the attractor shown in Fig. 3. 

 

 

 

. 

 

 

 

 

Figure 4 (ω=1, b=-0.1, c=0.02, A=0.5, B=4, Ω=golden mean, N=15) 

 

In Figure 5 (ω=1, b=-0.1, c=0.0067, A=0.5, B=4, Ω=golden mean, N=15) we choose b and c in 

such a way that the coefficient β1 given by equation (11) vanishes. 
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Figure 5 (ω=1, b=-0.1, c=0.0067, A=0.5, B=4, Ω=golden mean, N=15) 

 

We conclude from equation (14) that the fractal behavior is always present. 

In Figure 6 (ω=1, b=-0.1, c=0.02, A=0.5, B=4, Ω=golden mean, N=15) with initial conditions 

X0=1.19, Y0=0.  

Figure 6 (ω=1, b=-0.1, c=0.02, A=0.5, B=4, Ω=golden mean, N=15) 

 

The phase given by the equation (17) is fractal and the Poincarè section is an evenly filled phase 

space region but thinner than the attractor we observe in Fig. 4. 

Roughly speaking we can state that numerical simulation suggests that the attractor thickness is 

depending on the initial conditions. 
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4. Conclusion 

It is well known that the Weierstrass function is nowhere differentiable, with fractal properties. 

Following this input, we investigated a weakly nonlinear oscillator with a fractal forcing, given by 

the Weierstrass function, and the AP method to study its behavior.  In the linear case the resulting 

motion is simply given by the sum of the fractal forcing with the linear oscillation, but in the 

nonlinear case the oscillator phase and its frequency also become fractal. We obtain the Poincarè 

sections in various cases and all theoretical findings are corroborated with numerical simulation. This 

paper could be the starting point for future research about nonlinear fractal oscillators and possible 

connections with real life. 
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