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Abstract 
In parametrically excited van der Pol system, dangerous vibrations can be controlled and 

governed by Jerk dynamics. We choose a non-local force for the vibration control and a third 

or-der nonlinear differential equation (jerk dynamics) is necessary for the control method 

implementation. Two slow flow equations on the amplitude and phase of the response 

describe the oscillator motion and we are able to check the control strategy performance. The 

stability and response of the system is connected to the feedback gains. The dangerous 

excitations amplitude peak can be reduced adequately picking feedback gains. The new 

method is successfully checked by numerical simulation 
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1. Introduction 

 It is well known that the jerk dynamics consider the third order differential equations in the case 

that the dependent variable is the displacement (see Schot [1]).  

Maccari [2, 3, 4] studied the non-local oscillator, i.e. an oscillator subjected to a non-local force 

that is equivalent to a third order differential equation using an adequate perturbation method and 

found the oscillator stability and its most important feature. Gottlieb [5] used the harmonic balance 

method and found periodic solutions and limit cycles [6-7] for some simple jerk equations.  

Linz carefully investigated the relation between one–dimensional jerk dynamics and nonlinear 

dynamical systems in three–dimensional phase space [8, 9]. An improved balance method was used 

by Wu et al. for nonlinear jerk dynamics equations [10] .  

Finally, Ma et al. [11] used the He’s homotopy method and Hu [12] a first–order harmonic 

balance procedure with a parameter perturbation technique for nonlinear jerk dynamics.  
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Maccari [13] tried to figure out how the jerk dynamics can produce a novel strategy for 

suppressing the self-excitations for both generic nonlinear oscillators with quadratic and cubic 

nonlinearities and the van der Pol oscillator.  

In this paper we use for the first time  jerk dynamics for the vibration control and suppression of 

dangerous vibrations in the parametrically excited van der Pol oscillator.  

A lot of effort has been devoted in the last years to vibration control. Nandi et al. [14] 

investigated the vibration control of a rotor using one-sided magnetic actuator and a digital 

proportional-derivative control. Xue and Tang [15] studied the vibration control of a nonlinear 

rotating beam using a piezoelectric actuator and sliding mode approach. Song and Gu [16] 

considered the active vibration suppression of a smart flexible beam using a sliding mode based 

controller.  

Parametrically excited systems have been extensively studied in the last years investigated the 

parametric resonance control was studied by Asfar and Masoud [17] using a Lanchester-type damper 

and they accomplished successful vibration suppression and vibration control. Yabuno [18] 

considered a control law based on linear velocity feedback and linear and cubic feedback. His most 

important findings are that nonlinear position feedback can reduce the response amplitude in the 

parametric excitation-response curves and velocity feedback stabilizes the trivial solution in the 

frequency-response curves.  A forced Duffing oscillator with time delay state feedback was 

investigated by Hu et al. [19] and using the multiple scales [20, 21] method they found that correct 

choices of feedback gains and time delay are possible for a better vibration control. Plaut and Hsieh 

carefully considered periodically forced nonlinear systems in the case of nonlinear structural 

vibrations with a time delay in damping [22] . 

Maccari studied the fundamental [23] and primary [24] resonances of a van der Pol system and 

found that the vibration control and high amplitude response suppression can be successfully 

implemented using a non-local feedback control.  

The van der Pol system with a non-local force is given by 

𝑋̈ + 𝜔ଶ𝑋(𝑡) − 𝑎(1 − 𝑋ଶ)(𝑡)𝑋̇(𝑡) − 2𝑓𝑋(𝑡)𝑐𝑜𝑠(𝛺𝑡) = 𝐹൫𝑋(𝑡)൯        (1) 

where a is the coefficient of the steady source of energy (a>0), f  the parametric excitation 

amplitude, 𝜔 ≈
ఆ

ଶ
 and 

𝐹൫𝑋(𝑡)൯ = ∫൫AX(t’)൯+BXଶ(t’)+CXଷ(t’) dt’             (2) 

is the non-local force and A, B, C appropriate control parameters (non-local feedback gains). 

This type of force includes the whole precedent temporal evolution of a given particle, and not only 

its actual position. The initial conditions are 

𝑋(0)=X଴  𝑋̇(0) = 𝑋଴̇.                     (3) 

The integro-differential equation (2) is equivalent to third order differential equation  

(4) )()()(

)sin()(2)cos()(2))()()()(2()()()(
32
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tCXtBXtAX
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with the initial conditions 

𝑋(0) = 𝑋଴  . 𝑋଴̇ = 𝑋̇(0)                   (5) 

           (6) 

The paper is arranged as follows. In Sect. 2 we consider the van der Pol equation (1-3) and the 

integro-differential equation (1-2) is equivalent to third order differential equation (4). 

The paper is arranged as follows. In Sect. 2 we consider the van der Pol equation (1-3) and use 

an adequate perturbation method [23-24], that merges together the most useful properties of 

harmonic balance and multiple scale methods. A slow time scale can be used to investigate the 

nonlinear system behaviour. A systematic means is then provided to derive increasingly accurate 

solutions by increasing the order of approximation in terms of a small parameter (). Note that, for 

the first-order approximate solution, results are identical to those obtainable with the other 

perturbation methods. Obviously, there may be other solutions, for example large-amplitude quasi-

periodic motion or chaotic behavior, which the slow flow equations do not describe.  

Two slow-flow equations on the amplitude and the phase are obtained. Phase-locked solutions 

(corresponding to periodic motion with fixed phase) and their stability are discussed. The feedback 

gains are chosen by analyzing the modulation equations of the amplitude and phase.  

We consider how the stability and response of the system under control can be affected by 

appropriate choices of the feedback gains. We demonstrate that the control performance can be 

accomplished and the amplitude peak of the resonant response reduced.  

Vibration control for the parametrically excited van der Pol system has been discussed in a 

previous paper [25]. The technique exposed in this paper is very different from the method discussed 

in [25]. We accomplish vibration control by various contour plots in such a way that we can freely 

choose the feedback gains that correspond to the desired amplitude response.  

On the contrary, in [25] the author uses a traditional method based on parametric excitation-

amplitude response curves for the uncontrolled system and the controlled system. There is no way to 

obtain a previously chosen amplitude response. 
 

2. The lowest order solution 

In order to apply the perturbation method we assume weak damping and (linear and quadratic) 

feedback gains and scale the coefficients,  

(a,A,B) → 𝜀ଶ(a,A,B),                      (7) 

where 𝑒 is a small nondimensional parameter that is artificially introduced to serve as 

bookkeeping device and will be set equal to unity in the final analysis.  

In this section we consider the van der Pol equation with a non-local control (4) and introduce the 

slow variable 

τ=εଶ𝑡,                           (8) 






 00000
2
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because we need to look on larger scales, in order to obtain a non-negligible contribution by 

nonlinear and control terms. 

We consider the case of principal parametric resonance and set 

      ω=
ఆ

ଶ
+εσ                      (9) 

where 𝜎 is the detunung parameter. The solution X(t) of equation (4) can be expressed by means 

of a power series in the expansion parameter ,  
𝑋(𝑡) = ∑ 𝜀ఊ೙𝜓௡(τ;|𝜀)exp(−inωt),

ାஶ
n=ିஶ               (10) 

where 𝑔௡ = |𝑛| for 𝑛¹0, 𝛾଴ = 2 and 𝜓௠(ξ,ε)=ψ ష೘(ξ,ε). 

Equation (10) can be written more explicitly  

𝑋(𝑡)=εଶ𝜓଴(τ;ε)+ε(𝜓ଵ(τ;ε)exp(−iωt)+c.𝑐.)+h.𝑜.𝑡.,             (11) 

where h.o.t. = higher order terms and 𝑐.𝑐. stands for complex conjugate of the preceding terms. 

The functions 𝜓௡(τ,ε) depend on the parameter  and we suppose that the limit of the 𝑦௡ for 𝑒 → 0 

exists and is finite and moreover they can be expanded in power series of , i.e. 

𝜓௡(τ;ε) = ∑ 𝜀௜ஶ
i=଴ 𝜓௡

(௜)(𝜏).                  (12) 

In the following for simplicity we use the abbreviations 𝜓௡
(଴)=ψ௡ for 𝑛¹1, 𝜓ଵ

(଴)=ψfor n=1 and 𝜓ଵ
(଴)=χ 

for n=0. In the lowest order calculations, only the functions corresponding to i=0 appear.  

The solution is then a Fourier expansion in which the coefficients vary slowly in time and the 

lowest order terms correspond to the harmonic solution of the linear problem. Evolution equations 

for the amplitudes of the harmonic terms are then derived by substituting the expression of the 

solution into the original equations and projecting onto each Fourier mode. 

For n=1 we obtain the linear equation (order 𝜀2) 
ିଷ

ସ
𝛺ଶ𝜓ఛ +

௔

ସ
𝛺ଶ(𝜓 − |𝜓|ଶ𝜓) − 𝑖

ఆ

ଶ
fψ − 𝑖

ఆమ

ଶ
σψ

Aψ+3𝐶|𝜓|ଶ𝜓
.              (13) 

Considering equation (4) for n=0  yields (order 𝜀ଷ)  
ఆమ

ସ
𝜒ఛ=Aχ+2𝐵|𝜓|

ଶ.                     (14) 

We can derive a nonlinear differential equation for the evolution of the complex amplitude 𝛹 and 

the real zero-mode amplitude𝜒,  

𝛹ఛ = (𝛼ଵ+iαଶ)Ψ+iαଷ𝜓 ∗ +βଵ|𝛹|
ଶ𝛹,                   (15) 

𝜒ఛ = (𝛼ସ)χ+βଶ|𝛹|
ଶ                      (16) 

where 

𝛼ଵ =
ିସ஺

ଷఆమ +
௔

ଷ
,  𝛼ଶ = 2𝜎 3⁄   , 𝛼ଷ = −2𝑓 3⁄ 𝛺                 (17) 

                        𝛼ସ =
ସ஺

ఆమ
        𝛽ଵ =

ିସ஼

ଷఆమ
+

௔

ଷ
,      𝛽ଶ =

଼஻

ఆమ
.                          (18) 

Expressing the complex-valued function 𝜓 into real and imaginary parts, we obtain 

Ψ=ρexp(iϑ)                       (19) 

and arrive at the model equations 
dρ

dτ
=αଵρ+βଵ𝜌

ଷ+αଷ𝜌sin2𝜗,                                                               (20) 

𝜌
dθ

dτ
=αଶ𝜌 − 𝛼ଷ𝜌cos2𝜗                                                                                           (21) 


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dχ

dτ
=αସχ+βଶ𝜌

ଶ.                                    (22) 

From equations (20), (21) and (22) we can express the field X(t) to the second approximation as 

𝑋(𝑡) = 2ερ(𝜏)cos൫ωt − 𝜗(𝜏)൯+εଶ𝜒(𝜏),                    (23) 

where 𝜌 and 𝐽 are given by Equations (20-21). 

Moreover, the approximate solution is asymptotically exact, i.e. valid on bounded intervals of the 

𝜏-variable and on t-scale, t=O(1 𝜀ଶ⁄ ). If one wishes to construct solutions on intervals such that 

τ=O(1 𝜀⁄ ), then the higher terms must be included, because they will in general affect the solution. 

 

3. Vibration control for the van der Pol equation 

Periodic solutions of the complete system described by equation (4-6) correspond to the fixed 

points of equations (20-22), which are obtained by the conditions dρ dτ=dϑ⁄ dτ=dχ⁄ dτ=⁄ 0.  

The trivial solution is possible, but steady-state parametric excitation responses exist and the 

equilibrium points 𝜌ா, 𝜗ா, 𝜒ா are given by  

𝜌ா
ଶ =

ିఈభ

ఉభ
± ඥ𝛼ଷ

ଶ − 𝛼ଶ
ଶ =

ସ஺ି௔ఆమ

ିସC+aఆమ
+ ට4𝜎ଶ −

ସ௙మ

ଽఆమ
,              (24) 

and 
 

𝜌ா
ଶ =

ିఈభ

ఉభ
± ඥ𝛼ଷ

ଶ − 𝛼ଶ
ଶ =

ସ஺ି௔ఆమ

ିସC+aఆమ
− ට4𝜎ଶ −

ସ௙మ

ଽఆమ
             (25) 

where the expressions (4𝐴 − 𝑎𝛺ଶ) and (−4C+a𝛺ଶ) must have the same sign,      

 tan2𝜗ா =
ఈభ+βభఘ೪

మ

ఈమ
=

ିସA+aఆమ+ρಶ
మ ൫௔ఆమିସ஼൯

଺ఙఆమ
               (26) 

 𝜒ா =
ିఉమఘೄ

మ

ఈమ
=

ିସ஻

ఙఆమ
𝜌௲
ଶ.                 (27) 

In order to establish the stability of steady state solutions, we superpose small perturbations in the 

amplitudes and the phases of the steady state solutions of the equations (20-22) and the resulting 

equations are then linearized. We obtain from the equations (20-22) the linear equations 

𝜌ఛ=αଵρ+3𝛽ଵ𝜌ா
ଶρ+αଷsin(2𝜃ா)ρ+2𝛼ଷ𝜌ாcos(2𝜃ா)𝜃,                                     (27a) 

                𝜌ா𝜃ఛ=αଶ𝜌 − 𝛼ଷcos(2𝜃ா)ρ+2𝛼ଷ𝜌ாsin(2𝜃ா)𝜃,                 (27b) 

𝜒ఛ=αସχ+2𝛽ଶ𝜌ா𝜌.                       (27c) 

Subsequently we consider the eigenvalues of the corresponding system of first order differential 

equations with constant coefficients (the Jacobian matrix). A positive real root indicates an unstable 

solution, whereas if the real parts of the eigenvalues are all negative then the steady state solution is 

stable. 

The eigenvalue equation is 

(𝜆 − 𝜆ଵ)(𝜆 − 𝜆ଶ)(𝜆 − 𝜆ଷ) = 0,                    (28) 

where 

  𝜆ଵ = 2𝛽ଵ𝜌ா
ଶ,  𝜆ଶ = −2𝛼ଵ − 2𝛽ଵ𝜌ா

ଶ, 𝜆ଷ=αସ              (29) 

and   the conditions 

  𝛽ଵ < 0,  𝛼ସ < 0 𝛼ଵ > −𝛽ଵ𝜌ா
ଶ                 (29a) 
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are requested for the stability of the phase-locked solution (24-27). Note that the initial conditions 

of the van der Pol oscillator (4) are connected to the lowest order of perturbation with the initial 

conditions (𝜌଴,ϑ଴)of the amplitude and phase through the relations 

𝜌଴ =
ଵ

ଶ
ට𝑋଴

ଶ + ቀ
௑బ̇

ఠమቁ,   𝑡𝑎𝑛𝜃଴ =
௑బ̇

ఠ௑బ
,                   (30) 

We study three cases for the vibration control 

(i) the non-local feedback with A0, B=C=0. In this case, we obtain (see Figs. 1-2 for the 

stable(as given by (29a))  response 𝜌ா ) 

𝜌ா
ଶ =

ିఈభ

ఉభ
± ඥ𝛼ଷ

ଶ − 𝛼ଶ
ଶ =

ସ஺ି௔ఆమ

௔ఆమ ± ට4𝜎ଶ −
ସ௙మ

ଽఆమ
,   𝜒ௌ = 0.           (31) 

tan2𝜗ா =
ఈభ+βభఘ೪

మ

ఈమ
=

ିସA+aఆమ+ρಶ
మ௔ఆమ

଺ఙఆమ
                (32) 

 

 
FIGURE 1: Contour plot for the stable response amplitude (24)  as function of the linear feedback 

gain (A) and parametric excitation amplitude (f) for the van der Pol system. A varies from -0.2 to 0 

and f from 0 to 0.2. Numbers in the plot correspond to the response amplitude (a=0.01, 

B=C=0,σ=0.05 ,𝛺 = 1) 
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FIGURE 2: Contour plot for the stable response amplitude (25) as function of the linear 

feedback gain (A) and parametric excitation amplitude (f) for the van der Pol system. A varies 

from -0.2 to 0 and f from 0 to 0.2. Numbers in the plot correspond to the response amplitude 

(a=0.01, B=C=0, σ=0.05,𝛺 = 1) 

 

 

We observe that we can reduce the amplitude of the parametric excitation for the following 

feedback gain A  

A=
௔ఆమ

ସ
±

௔ఆమିସ஼

ସ
ට4𝜎ଶ −

ସ௙మ

ଽఆమ
.                   (33) 

(ii) the non-local feedback with A0, B0, C=0. The value of the excitation amplitude remains 

given by (29-30), but it is present an excitation of the zero mode given by (27). 

(iii) the generic non-local feedback with A0, B0, C0. In this case (see Figs. 3-4 for the stable 

(as given by (29a)) response 𝜌ா and Figs. 5-6 for𝜒ா), we obtain the equations (24-27).  
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FIG 3: Contour plot for the stable response amplitude (24) as function of the linear feedback gain 

(A) and cubic feedback gain (C) for the van der Pol system. A varies from -0.2 to 0 and C from -1 to 

0. Numbers in the plot correspond to the response amplitude (a=0.01, B=0.1, f=0.04, σ=0.05,𝛺 = 1) 

 
FIG 4: Contour plot for the stable response amplitude (25) as function of the linear feedback gain 

(A) and cubic feedback gain (C) for the van der Pol system. A varies from -0.2 to 0 and C from -1 to 

0. Numbers in the plot correspond to the response amplitude (a=0.01,  B=0.1, f=0.04, σ=0.05,𝛺 = 1) 
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FIGURE 5: Contour plot for the zero-mode amplitude (27) with 𝜌ா given by (24) as function of the 

linear feedback gain (A) and quadratic feedback gain (B) for the van der Pol system. A varies from -

0.2 to 0 and B from 0 to 0.2. Numbers in the plot correspond to the zero-mode amplitude (a=0.01, 

f=0.04, σ=0.05, C=-0.01, 𝛺 = 1) 

 

FIGURE 6: Contour plot for the zero-mode amplitude (27) with 𝜌ா given by (25) as function of 

the linear feedback gain (A) and quadratic feedback gain (B) for the van der Pol system. A varies 

from -0.2 to 0.0 and B from 0 to 0.2. Numbers in the plot correspond to the zero-mode amplitude 

(a=0.01, f=0.04, σ=0.05,B=0.1, 𝛺 = 1) 
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The choice (33) reduces both the parametric excitation amplitude  𝜌ா and the zero-mode amplitude 

𝜒ா, but the steady-sate solution is also reduced by the decrease of the control term B. The asymptotic 

approximate solution is 

𝑋(𝑡) = 2𝜌ாcos(ωt − 𝜗ா)+χா,                (34) 

as given by (24-27) 

In order to check the validity of the control method, the van der Pol equation (4) with the initial 

conditions (5-6) has been numerically integrated by the Runge-Kutta-Fehlberg method. An example 

is given in Fig. 7. We see that there are only slight differences between the theoretical prevision (34) 

and the numerical result. 

 
FIGURE 7: Phase-space representation of the parametrically excited van der Pol equation. Solid 

lines stand for the approximate solution and crosses for the numerical result. (a=0.01,, A=-0.015, 

B=0.1, C=-0.01, f=0.04, σ=0.05, 𝛺 = 1) 

 

 

We conclude that appropriate choices for the feedback gains can accomplish a successful control 

strategy for the reduction of the parametric excitation of the van der Pol equation.  
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4. Conclusion 

Dangerous vibrations in the parametrically excited van der Pol oscillator can be easily controlled 

using jerk dynamics. Taken into account that a non-local feedback force produces a jerk dynamic 

and using an adequate perturbation method we have derived two slow flow equations on the 

amplitude and phase of the response. The performance of the control strategy has been investigated 

and we have found that the amplitude peak of the dangerous excitation can be reduced and found the 

correct choices for the feedback gains. In conclusion we can state that jerk dynamics can be 

successfully used in order to control dangerous nonlinear vibrations, Research developments could 

consider laboratory experiments in order to accomplish this vibration control. 
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