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Abstract 
The most important properties of strong interactions, confinement and asymptotic freedom, 

can be explained in a purely geometric way, using a non-local modification of the general 

relativity. At the same time, the dichotomy matter-field of the Einstein equation is eliminated 

and the physical world is described only by means of a unified field. Hadrons can be identified 

with “strong” black holes. The uncertainty principle emerges naturally in this model as 

consequence of the non-local modification of the General Relativity. 
 

Keywords:  confinement, asymptotic freedom, nonlocality, General Relativity, Heisenberg 
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1. Introduction 

 In a previous paper [1], we have developed a non-local theory based upon a modification of 

the general relativity. We review briefly the main findings of the paper. 

It is well known that in the general relativity, the theory nonlinearity implies that the 

gravitational field can become source of itself. However, in the Einstein equation, 

 TRgR 
2

1
,         ,

 RgR            (1.1) 

where R  is the Ricci tensor, T  the energy-momentum tensor,   a coupling constant and g  

the metric tensor, matter is always present through the energy-momentum tensor, that can be 

calculated only on a phenomenological basis. 

In a nonlinear field theory, it is possible to eliminate the matter, because a particle becomes a 

small spatial region, where the field assumes particularly high (eventually infinite) values. A particle 

is a lump of energy, a nonlinear field excitation that is able to maintain its identity during the time. 

All the attempts carried out by Einstein in order to construct a nonlinear field theory can be really 

considered as models where particles would be particular non singular solutions of the field equation.  
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In conclusion, the Einstein theory is characterized by the spacetime deformations expressed with 

the Ricci tensor, but the nonlinearity of the LHS of (1.1) is “spoilt” by the RHS, where the energy-

momentum tensor is simply the source term of the linear field equations.  

However, we note that relativistic quantum field theory, that is produced by the fusion of 

quantum mechanics with special relativity, reduces the field to a collection of particles (the quanta of 

the field) by means of the second quantization method. That is the contrary of Einstein’s ideas about 

the superiority of the field with respect to the matter. 

To avoid misunderstandings, it is necessary to point out that the Einstein’s opposition to the 

nonlocality [2] refers to particle interactions. The quantum mechanics incompleteness would be 

caused by absurd nonlocal (faster than light) effects that link together a couple of particles, that have 

interacted in the remote past. In the classical field theories, particles exist independently from the 

field, that is the force mediator among particles. In this framework, it is impossible to conceive an 

instantaneous propagation of the forces.  

However, if matter is not independent from the field but is a part of the field itself, then the 

nonlocality has a completely different meaning, because it is the expression of the coherence of the 

unified field. 

We have identified four postulates for the new theory: 

i) Covariance principle: all the physical laws must be independent from the reference frame, i.e 

they must possess the same form in all the reference frames and that implies their tensorial character. 

Physical laws must be invariant not only for all the physically feasible reference frames, but also for 

a generic coordinate change that produces a not feasible reference frame (for example the 

Schwarzschild reference frame); 

ii) Equivalence principle: the field can be always eliminated by an appropriate choice of the 

reference frame; in other words, mass and charge are equal; 

iii) Uniqueness principle: the only reality is the (unified) field and particles are not irreducible 

entities. They are a part of the field, produced by its nonlinear structure; 

iv) Nonlocality principle: the field equation must produce nonlocal correlation effects. 

The first requirement is similar to the corresponding general relativity principle, the second 

extends to all interactions the general relativity equivalence principle, the third is the Einstein’s 

dream, while the fourth would imply the temporal irreversibility. 

We are then induced to postulate the following field equations 

R ; , 0                   (1.2) 

i.e. the covariant derivative of the Ricci tensor must vanish; in this way we can determine the 

spacetime metric structure (as usual comma denotes differentiation).  

As usual g  is the metric tensor, with 

 
 dxdxgds 2 .                (1.3) 
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Due to the symmetry of the Ricci tensor, the system (1.2) corresponds to 40 independent 

equations. The system (1.2) can also be written in the form 

0,  





 RRR .             (1.4) 

Note that the field equations (1.4) are linear with respect to the third order derivatives. As a 

consequence (1.4) is not invariant to the substitution t with –t and, besides, the presence of third 

order derivatives imply nonlocal effects. 

We have considered the Schwarzschild problem (the spherical stationary case) where the metric 

tensor is 





  )(sin

1 22222222 


 ddrdrdtcds ,        (1.5) 

where )(R  .  

The field equations (1.4) can be exactly resolved in the spherical stationary case and for the 

metric tensor we find [1] 

R

A
KR  21 ,                  (1.6) 

where A and K are appropriate integration constants. Note that this solution is formally equal to 

that obtained with the Einstein equation with the cosmological term, but in the latter case K is not an 

integration constant, while now K can assume different values depending on the considered problem.  

It is well known that in general relativity the motion of a particle under the action of the 

gravitational field obeys the geodesic equation 

0
2

2


ds

dx

ds

dx

ds

xd 






 .               (1.7) 

Equation (1.7) is not valid in the new theory, because a particle is not independent and separated 

from the field. However, in many cases we assume the validity of (1.7) in the first order of 

approximation for that  problems where particles retain their identity.  

In Sec. 2 we derive the two Heisenberg uncertainty principles in a purely geometric way in the 

framework of the new theory. In Sec. 3 we investigate the strong interactions and show how 

asymptotic freedom and confinement can be easily derived. We obtain also Regge-like relations and 

the renormalization constant. In sec. 4 we discuss the motion of a light ray in the Schwarzschild 

metric. Final considerations and directions for future work are reserved for the last Section. 
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2. The uncertainty principle 
We consider the unidimensional motion in the Schwarzschild metric. We set A=0 and study the 

small oscillation of  (1.7) with (1.6) and obtain 

d R

dt

KR

KR

dR

dt
KR c KR

2

2 2

2

2 23

1
1 0









 








   ( ) .       (2.1) 

In the nonrelativistic limit we arrive at the nonlinear equation 

d R

dt
Kc R KR

dR

dt
K c R

2

2
2

2

2 2 33 0








  







   ,          (2.2) 

that can be studied with a perturbative method, for example the asymptotic perturbation (AP) 

method  [3-4]. The first order approximate solution is 

00 )cos(2)(   ttR ,              (2.3) 

where 0  and 0  are fixed by the initial conditions and 

  c K .                  (2.4) 

Note that the frequency is equal to linear case and is not modified by the nonlinear terms. In 

other words particles appear to possess a “zitterbewegung” or intrinsic trembling. 

The uncertainty principle 

4

h
PX  ,                   (2.5) 

where  X and P  are respectively the medium square root of the spatial and momenta 

measurements respectively. The equation (2.5) can be easily derived if 

Kmc

h

K 2

1
,

4

1
0  


,                (2.6) 

where 0  is the oscillation amplitude (2.3).  

We obtain 

)4)((
2

1 2
0

22 mKcmcE  ,               (2.7) 

2
)2)(2( 00


  mPX ,             (2.8) 

and moreover 

2
)

1
)(( 2 




mctE .               (2.9) 

It is crucial that the frequency does not depend on the oscillation amplitude (the nonlinear 

correction term of the frequency depending on the square of the amplitude vanishes as we can see 

using for example the AP method ) 

In order to support the previous result we seek an approximate solution of the equation (1.2) in 

the linear limit. We use the diagonal metric  
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222222 dtDcCdzBdyAdxds  .         (2.10) 

We recall that the metric (2.10) is not the general case in 3+1 dimensions, but only in 2+1 

dimensions. 

We set 

A A B B C C D D          1 1 1 1, , , ,       (2.11) 

where A, B, C, D <<1. 

We seek a solution of the form 

 exp ( , , , ),i k x t P x y z t
 

 

 









           (2.12) 

where P(x,y,z,t) is a second order polynomial and obtain 

A i k x t a x a y a z a xy a xz a yz

a t a xt a yt a zt a x a y a z a t

  

 









       

      

 

 exp

,

1
2

2
2

3
2

4 5 6

7
2

8 9 10 11 12 13 14

   (2.13) 

 

B A a b C A a c D A a d        ( ; ), ( ; ), ( ; ).          (2.14) 

with 

    

    

    

2
1
2

2 3

2
2
2

1 3

2
3
2

1 2

0

0

0

      

      

      

k k k

k k k

k k k

, , , ,

, , , ,

, , , .

         (2.15) 

The second grade polynomial is a consequence of the third derivatives of the equation (1.2). 

For the validity of the approximation the terms depending on time must vanish and the other 

terms must form a potential hole. 

Using the geodesics equation (1.7), we obtain in the 1+1 dimensional case the harmonic 

oscillator equation 

,01
2 



XdcX                   (2.16) 

in the nonrelativistic and linear limit. The equation (2.16) confirms the presence of an intrinsic 

trembling. 

 

3. Confinement and asymptotic freedom for the strong interaction 
Inside a hadron in order to describe strong interactions  among quarks, we adopt the equation 

(1.7) and with   =cost,  = /2 , motion along a plane, we obtain 

R
d

ds
H2 

 ,                  (3.1) 


dt

ds
B ,                    (3.2) 

d R

dt

d

dR

dR

dt
c

d

dR

H

R B

2

2

2

2
2 3

3 2

3

2 2
0









 







   


   

,         (3.3) 
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where B and H are the motion constants. 

An alternative form of the equation (3.3) is 

d u

d
u

A

H
Au

K

H u
u

R

2

2 2
2

2 32

3

2
0

1


     , .          (3.4) 

If in the equation (3.4) we neglect the fourth and the fifth term, we obtain the newtonian orbits 

of the two-body problem. We now consider the equation (3.3) in the nonrelativistic limit  (B1/c) 

and for small distortions of the metric ( 1 ), 

d R

dt
Kc R

Ac

R

c H

R

2

2
2

2

2

2 2

32
0









     ,            (3.5) 

where we find the harmonic, newtonian and centrifugal  terms. 

The potential for unit mass is 

2

222
22

222

1
)(

R

cH

R

Ac
RKcRV   .           (3.6) 

We study the small oscillations around a minimum,  R0, (with A>0, K>0), the equation (3.5) 

yields 

d R

dt
AR BR CR

2

2
2 3 0









     ,             (3.7) 

A
Ac

R

H c

R
B

Ac

R

H c

R
    

3

2

4 3

2

62

0
3

2 2

0
4

2

0
4

2 2

0
5, ,          (3.8) 

C
H c

R

Ac

R
 

10 22 2

0
6

2

0
5 ,               (3.9) 

The first order approximate solution is 

),cos(2)( 000   tRtR            (3.10) 

with 0  e 0  depending on the initial conditions and  is given by 

  



( ),1 0

2

4

D
              (3.11) 

A ,  9
0

42

8
0

42

2

9

4

3

R

cAH

R

cA
D  .         (3.12) 

The weak nonlinearities in (3.17) cause a frequency renormalization from   (3.12) to  (3.11). 

The harmonic motion (3.10) is very important because it can explain well-known results about 

hadronic mass spectra obtained just postulating the existence of the harmonic motion. We consider 

now the unidimensional motion and from the equation (3.3) with H=0 we obtain 

d R

dt

d

dR

dR

dt
c

d

dR

2

2

2

23

2 2
0









 







  


  

,          (3.13) 

For the small oscillations around the equilibrium point 
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0,0,
2

3
0  KA

K

A
R   or  0,0  KA           (3.14) 

we obtain 

d R

dt
Kc R

Kc R

R

KR dR

dt

Kc R

R

2

2
2

0

2
0

2

0 0

2 2
0

3

0
23

3 9 3
0









   







 







( )
,      (3.15) 

 0 0
21 3  KR .                (3.16) 

The first order approximate solution is 

)cos(2)( 000   tRtR             (3.17) 

,
3

11
1 2

0

2
0











R

                (3.18) 

)31(3 2
0KRKc  ,              (3.19) 

where 0 , 0  are given by the initial conditions. 

Also in this case, the weak nonlinearities in (3.15) cause a frequency renormalization from  

(3.19) to  (3.18). 

If we consider the Newtonian limit (v<<c), we obtain 

d R

dt

dV R

dR

2

2 0








  

( )
,              (3.20) 

where 

V R
c A

R
KR( ) .  









2
2

2

4
1               (3.21) 

For the small oscillations around a stable equilibrium position RS , we obtain the equation (3.10), 

but with 

  













1 0

2

4

D
,                  (3.22) 

   A A c K K R, ( ),2 2 2
03 9               (3.23) 

D
K K

R

K R
  

117

2

3 297

2

3 2

0
2

4
0
2

.              (3.24) 

We now show how the Schwarzschild metric can be used to study the interior of an hadron and 

consider the potential (3.21), that presents both the confinement and the asymptotic freedom. Our 

analysis is rigorously applicable only to a tiny mass m that moves in the field of a large mass M.  

If we want to include the centrifugal effects we must use the equation (3.3) that for intermediate 

distances (HH) is equivalent to the potential 

,
2

1
4

)(
22

22
2

2

Rm

J
KR

R

Ac
RV 






            (3.25) 
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with the angular momentum J, 

,mcHJ      (3.26) 

or more simply 

22

22

22
)(

Rm

J

R

Ac
RV  .       (3.27) 

In the newtonian limit there are circular orbits where the force vanishes with the radius 

22

2

0 cAm

J
R       (3.28) 

and where we observe the asymptotic freedom. Near the value (3.28) the hadron constituents 

behave as if they were almost free particles. Note that in this case the expression (3.28) is valid even 

when the particle of mass m does not possess a small mass with respect to the mass M. In order to 

describe strong interactions inside a meson, we set the following values for the constants 

2

2

c

SM
A  ,              

2m

c
S


 ,       (3.29a) 

We know indeed that for the quark-quark-gluon coupling 

2.0
2


c

Sm


,   (3.29b) 

bur however the value will vary with the particular hadron chosen for the comparison. From the 

equation (3.28) we obtain a typical value for the meson radius 


mcSm

J
R


3

2

0   1 fm,       (3.30) 

with 

m M 
1

3
(proton mass),       (3.31) 

From (3.28) we obtain also 

22

3

mm
J




,     (3.32) 

i.e. the well known Regge relation. 

A more rigorous result can be obtained using the equation (6.9). 

Typical values for the constants are 

),(4.0),(2.0 1241 fmGevMcAfmcGevS         (3.33a) 

),()(6 2222  fmGevMcK       (3.33b) 

At very large distances, when R is greater of the hadron radius (3.30), we obtain from (3.25) an 

attractive radial force 

)
2

1( 2
2

2 KR
Rc

SM
KRmcF  ,        (3.34) 
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i.e. a confining force able to explain the confinement of quarks. Note that the confinement can 

be obtained also  for negative values of K (for large R the K2  term is dominant). 

It is well known that in the case of a spherically symmetric static and diagonal metric, the 

Lorentz factor is proportional to 00g . The strong coupling constant is then 

,
2

1
)(

2
2

2





 


RK

Rc

SM
c

SM
RS



          (3.35) 

and taking into account the relativistic mass variation we newly derive both the asymptotic freedom 

and confinement. Note that the strong coupling constant (3.35) is analogous to the perturbative 

coupling constant of the standard theory and contains both asymptotic freedom and confinement. 

The energy of a particle of mass m in the stable circular orbit is 

,
3
00

02

KRAR

R
mcE


          (3.36) 

where R0 is the equilibrium point. Using the equation (3.28)., we obtain with the second of 

(3.29a) the approximate relation 

1

2

2




mc

E
J


.        (3.37) 

 

4. The motion of a light ray into a hadron 
For the motion of a light the condition is 

02 ds ,                      (4.1) 

that for radial motion yields from (1.5-1.6) 

0)()(
2

1 2  RV
dt

dR
,                  (4.2) 

i.e. the classic motion of a body with zero energy in the potential 

22
2

)1(
2

)( KR
R

Ac
RV  ,                (4.3) 

We seek the positive roots of the cubic equation 

03 
K

A

K

R
R ,                   (4.4) 

and find three cases: i) only one real root 

R u v1   ,                     (4.5) 

u
A

K

A

K K
   

2 4

1

27

2

2 3
3 ,               (4.6) 
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v
A

K

A

K K
   

2 4

1

27

2

2 3
3 ,              (4.7) 

if 

A
K

2 4

27
  ,                 (4.8) 

ii) two real roots 

R u v R R
u v

1 2 3 2
    


, ,            (4.9) 

if 

A
K

2 4

27
  ,               (4.10) 

c) three real roots 

R r R r1
3

2
3 02

3
2

3
120  cos , cos( ),

 
        (4.11) 

R r r
K3

3 0
32

3
240

1

27
   cos( ), ,


         (4.12) 

cos ,  
A K

K

27

2

3

             (4.13) 

If 

A
K

2 4

27
                 (4.14) 

These roots are acceptable only if are positive. In these cases light does not enter into the hadron 

and we can get a valid model of a static particle (micro black hole).  

 

5. Conclusion 
We have introduced a purely geometric nonlinear and non-local modification of the General 

Relativity and we have derived the most important properties of strong interactions, confinement and 

asymptotic. The uncertainty principle emerges naturally in this model as consequence of the non-

local modification of the General Relativity. At the same time, the dichotomy matter-field of the 

Einstein equation is eliminated and the physical world is described only by means of a unified field.  

Moreover, we note that in the last years a purely classical approach by Einstein-type equations 

(with the cosmological term ) has been accomplished to explain strong interactions and hadron 

structure in the usual 3+1 spacetime dimensions [42-44], without introducing extra dimensions. 

Along these guidelines, an unified bi-scale theory of gravitational and strong interactions can be 

constructed and, in particular, hadrons are identified with ‘strong’ black-holes, i.e. suitable stationary 

and asymmetric Kerr-Newman-de Sitter solutions of this Einstein-type equations. As a consequence, 

the constant  and the masses result to be scaled up and transformed into a hadronic constant and 

strong masses respectively. Using this approach, confinement and asymptotic freedom have been 




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easily derived. This theory is different from that exposed in the present paper in the fundamental 

postulates but similar in the physical results about strong interactions. 

From the above considerations, it seems possible the interpretation of strong interactions by 

means of the new equation (1.2). Future papers we will investigate in detail the identification of 

elementary particles with lumps of the field, i.e. zones where the field assumes particularly high or 

infinite values (black holes).  
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