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Abstract 
We propose an elementary way of introducing the gauge principle to beginners with a 

background in only mechanics, electromagnetism, and quantum mechanics.  This evolves 

from an apparent conflict in the Schrodinger-Born formulation of wave mechanics, and does 

not have to resort to advanced concepts like covariant derivative and minimal coupling.  

With such an approach, one would have appreciated how interactions can be dictated from 

consideration of internal symmetry of a physical system, which serves as a principle 

underlying the foundation of almost all modern physics.  In addition, the gauge principle 

also serves as a resource providing consistency between the Born rule and Schrodinger’s 

wave mechanics. 
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1. Introduction 

As is well-known, one of the most significant developments in the understanding of the 

fundamental interactions in the physical universe is the establishment of various gauge theories [1, 

2]. These include, for example, the U (1)gauge theory for quantum electrodynamics; the 

electroweak theory; and the standard model. In the introduction 

of these theories to beginners in a course of elementary particles, the principle of local gauge 

invariance is often introduced as “ a new principle in its own right ” through abstract concepts like 

“covariant derivative” and “minimal coupling” [3].  Here we would like to focus on a more 

elementary approach by just observing an apparent conflict arising from the Schrodinger-Born 

formulation of nonrelativistic quantum mechanics.  

 Historically, the development of gauge theories first started with Weyl in 1918 before 

quantum mechanics, then followed by Fock in 1926 right after Schrodinger discovered wave 

mechanics, when Weyl returned in 1929 to complete the establishment of Abelian gauge theory 

for electrodynamics.  The achievement of the modern non Abelian theories started with Klein in 
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1938† which followed with the Yang-Mill theory in 1954 [1, 2] along with the unpublished work 

by Shaw in his Ph.D thesis [4].  Moreover, the ingenious observation of Fock immediately after 

Schrodinger’s work was inspired by the contemporary “fifth dimension proposition” for unifying 

gravity with electromagnetism, from which that additional dimension was proposed by Fock to 

associate with the wave function of Schrodinger instead [5].  It is interesting to note that Fock’s 

paper was published without being aware of the discovery of the probability interpretation of the 

wave function by Max Born [6], and hence the statistical interpretation of the wave function was 

then unknown to him.  Here, through a brief review, we point out that had one just examined 

critically the Schrodinger-Born formulation of wave mechanics, Fock’s discovery can immediately 

be revealed leading at once to the establishment of the fundamental principle of gauge field: 

symmetry dictates interaction [7].We further point out that besides serving as a mechanism for 

determining the interaction, this principle also serves as a necessity for ensuring the full 

consistency between the Born rule and the Schrodinger equation. 

 

2. The Schrodinger-Born Wave Mechanics 
 As is well-known, in the miraculous year 1926 for Schrodinger, wave mechanics was 

established through publications of a series of momentous papers – starting from the time 

independent equation and its application to the hydrogen atom in January to finally the proposition 

of the time dependent equation in June of that year [8].  In “deriving” the time dependent equation, 

it is of interest to recall that Schrodinger first proposed an equation containing all real variables 

with 4th order spatial and 2nd order temporal derivatives.  Followed with an ingenious twist, 

Schrodinger then switched to propose one with 2nd order in space and first order in time, with the 

introduction for the first time the imaginary number  into a fundamental law of Nature#.  

This then makes the wave function   necessarily complex and thus defies any physical 

measurement of it.  As is well-known, the statistical interpretation was soon proposed by Born in a 

famous “foot-note” of a paper [6] in which Schrodinger’s theory was first applied to scattering 

problem with: 

   P = probability of finding the particle per spatial volume         (1) 

and this real quantity is the only information extracted from Schrodinger’s equation which 

determines all the observable behavior of the particle. 

†For an interesting discussion on Klein’s relevance to the later developments of the non 

Abelian gauge theory, see the paper by D. J. Gross, “Oscar Klein and Gauge Theory”, 

arxiv.org/abs/hep-th/9411233v . 

# And of course, the same had happened with the establishment of matrix mechanics around the 

same time by Heisenberg, Born and Jordan. 
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   In an introduction to a course in quantum mechanics, most texts often provide a 

“justification” for the consistency of the Schrodinger-Born formulation of wave mechanics via a 

derivation of the conservation of probability in the form of a continuity equation.  However, there 

actually exists an apparent inconsistency which is not always pointed out and could have led to the 

discovery of the gauge field principle - symmetry dictates interaction – as elaborated in the 

following. 

 

3. Apparent conflict in the Schrodinger-Born theory 
 To motivate one to appreciate the significance of the gauge principle, let us start with the 

simple case with the time independent Schrodinger equation for a nonrelativistic free electron: 

    ,                    (2) 

where for a free particle, the kinetic momentum is also the canonical momentum and is given by 

 in the x-representation.  To appreciate the apparent conflict between (1) and (2), 

one simply notices that for a particular solution  satisfying (2), (1) requires that any wave 

function in the form  will describe identical physics for the electron in that particular 

state.  However, it is easy to see that will not satisfy (2) in general, except for the special 

case when the phase  is a constant.  For example, when  is a function of space 

coordinates, one will have: 

    (3) 

and   

    (4) 

Hence 

                      (5) 

and we arrive at the conclusion that while  should describe the same physics for the 

electron according to Born, they do not satisfy the same Schrodinger equation. 

 

4. Restoring phase symmetry 
 Here we show that in order to restore the gauge (phase) symmetry in wave mechanics, the 

extra terms  in (3) and (4) have to be made physically insignificant.  We shall approach this 

in two steps: 
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(i) Symmetry dictates interaction  

Here we briefly review the fundamental principle of interaction being determined by internal 

symmetry of the system with reference to the apparent conflict discussed above.  To do this, we 

shall first introduce an external electromagnetic field to interact with the electron via a vector 

potential  in a unique way, while undergoing a simultaneous gauge transformation as the one 

implied from Maxwell’s electrodynamics.  We thus propose, under such situation, the kinetic 

and canonical momenta of the electron no longer identify with each other but generalized to the 

following relation:    

                 (6) 

and when , also undergoes simultaneously the usual gauge  

transformation which ensures Maxwell’s fields to be invariant: 

                 (7) 

Note that the factor added to the gradient term is proportional to the fundamental  

quantum of magnetic flux  which is to make Eq. (7) dimensionally correct.   

With (6) and (7) implemented, we see that (3) and (4) will now transform as follows: 

  (8) 

 and 

       (9) 

where (8) has been used in the last two steps in deriving (9).  Thus the result in (9)  

will ensure the transformed wavefunciton with an arbitrary spatial dependent phase  

to satisfy the same Schrodinger equation: 

                       (9) 

We hence conclude that to achieve gauge invaiance for both the source  and the field 

, the interaction between them has to be determined in a unique way with the kinetic 

momentum be replaced by one as given in (6).  To see this explicitly, one can rewrite (6) in the 

form: 

                (10) 

where  is the Lagrangian of the charged particle.  Integrating (10) with  
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respect to the velocity leads to the following result for the Lagrangian: 

        (11) 

where we have chosen the “integration constant” to be simply the electrostatic energy for 

charges not in motion via .  Thus we see that the introduciton of (6) and 

(7) not only restores full gauge (phase) symmetry so that both the Schrodinger and Maxwell 

equations remain invariant, but also determines the correct interaction between the source and 

the field leading to the well-known interaction Lagrangian as shown in the result in (11). 

 

(ii)    Full consistency for wave mechanics 

Now it is clear that even in the absence of any external field, the consistency between the 

Born rule and Schrodinger’s equation can be maintained only if one can implement a principle 

to make terms  to be physically irrelevant when the wavefunciton is allowed to acquire an 

arbitrary position-dependent phase.  Such a principle is exactly the gauge principle as can be 

seen from the above arguments in (i) by setting , still leaving with the possibility of 

“transforming away” the  terms.  Hence we conclude that for full consistency in the 

statistical interpretation of wave mechanics, not only the conservation of probability current 

(for real potentials) but also the gauge principle have both to be valid --- with the former 

guarantees the particle’s existence and the latter ensures the insignficance of an arbitrary phase 

factor added to the wave function which may be spatial dependent in general. 

 

5. Conclusion 
 Without starting from advanced / abstract concepts like covariant derivative, minimum 

coupling, the Dirac Lagrangian, or models like one with a hypothetical scalar field; the main idea 

of the gauge principle – symmetry dictates interaction – can be introduced in an elementary way.   

The key here is to note that to maintain full consistency between Schrodinger’s equation and 

Born’s probability interpretation of the wave function which allows one to introduce an arbitrary 

position-dependent phase factor , one has to implement a principle to make terms  to be 

physically irrelevant.  Such consistency also ensures expectation values of quantities like the 

momentum be uniquely defined depsite the arbitrariness in the phase of the wavefunction. The 

generalization to the time-dependent and relativistic case (including the non Abelian case), and to 

the derivation of Maxwell’s equations with sources can then be done by following standard 

advanced texts in the usual way [3, 9]. 
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