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   Abstract 
Since the unit of electric charge can be chosen independently of the value of the permittivity 

of free space ε0, it is shown that all electromagnetic quantities can also be assigned units 

directly in the MKS system.  For example, the unit of electric charge can be 1 J as long as ε0 

has units of 1 N.  A table is given that makes a comprehensive comparison of the standard 

units in the Giorgi system with those in two such direct MKS schemes.  A simple procedure is 

also described for changing the numerical values of the units in a systematic manner by 

dividing the various electromagnetic quantities into five distinct classes.  This allows one to 

equate the value of ε0 to 1/4π, for example, similarly as for the Gaussian system of units, 

while still retaining the same formulas as in the Giorgi system.   

©2015 Science Front Publishers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I. Introduction  
The fundamental equations of electricity and magnetism are expressed in terms of a rather large set of 

quantities that are not directly connected to the three units of kinematics, e.g. meter, kilogram and second in the 

mks system.  However, the Giorgi system was introduced [1] in 1901 in order to ensure that whenever the 

results of electromagnetic calculations involve exclusively kinematic quantities, they automatically come out in 

terms of the mks system of units.  By contrast, the purpose of the present study is to design an alternative system 

of units that allows one to express all electromagnetic quantities directly in the mks system.  To see how this 

goal can be accomplished in a practical way, it is helpful to carry out an extensive review of the Giorgi system 

of electromagnetic units in order to specify how it is related through experiment and theory to the mks system. 

II.  Coulomb’s Law and the Definition of Electric Charge 

The simplest way to begin this analysis is to consider how Coulomb’s Law is formulated in the Giorgi 

system.   The force Fe in Newton (1 N = 1  kg m/s
2
) between two electric charges qi and qj (expressed in Coul) 

separated by a distance of rij m is given by the vector relation: 

 

                             Fe  = qi qj rij/ (4πε0 rij
3
 )                 (1)  
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where ε0 is the permittivity of free space.  

Note that the units for ε0 are given in such a way (Coul
2
/Nm

2
) so as to insure that the final result is expressed in 

the mks unit of force (N).  The point that needs to be emphasized with regard to this equation is that it serves as 

a definition of both electric charge and ε0.  In order to satisfy the above requirement in the mks system, it is 

actually only necessary that the unit for the product of two electric charges qi qj divided by ε0 is Nm
2
.  This 

shows that there is an inherent redundancy in any system of electromagnetic units that cannot be removed by 

experiment.   

      We can take advantage of this redundancy for the purpose at hand by defining the unit of electric charge to 

be some combination of mks units, that is, without introducing a new unit such as the Coulomb for this purpose.  

We just have to make a corresponding choice of unit for ε0 to ensure that the force Fe in eq. (1) is expressed in 

N.  For example, the unit of electric charge could be defined to be the same as for energy (1 J = 1 N m).  That 

would simply mean that the unit of permittivity is N, since then qi qj/ε0 in eq. (1) has the required unit of Nm
2 

mentioned above.  The very arbitrariness of the above choice of units might tend to make one feel skeptical 

about such a procedure.  What it actually shows, however, is that such quantities are only defined indirectly by 

experiment.  As much as we have gotten used to the idea of electric charge over time, it should not be forgotten 

that there is no other way to determine its magnitude experimentally than to measure the force exerted between 

it and another charge when they are a certain distance apart. 

       It is no less permissible to choose a system of electromagnetic units such that ε0 is dimensionless.  This is 

in fact what is done with the older Gaussian set of units in which charge is expressed in esu.  In that system the 

quantity 4πε0 in Coulomb’s Law is missing entirely.  One can do this and still remain in the mks system by 

defining the unit of electric charge to be N
0.5

m.  Again, there is no a priori reason for avoiding such a choice 

because charge is only defined experimentally through eq. (1).  

       There is only one other relationship that must be satisfied in order to extend such an mks-type system to the 

description of magnetic interactions.  The constant µ0 in the law of Biot and Savart [2] must satisfy the equation 

from Maxwell’s electromagnetic theory: 

                           ε0 µ0 c
2   

= 1,                                                                            (2) 

where c is the speed of light in free space (2.99792458x10
8
 m/s).   

The unit in the Giorgi system is N/Amp
2
 or Ns

2
/Coul

2
.  If the unit of ε0 is N, it follows from eq. (2) that the 

corresponding unit for µ0 is s
2
/Nm

2
.  Alternatively, if ε0 is to be dimensionless, then the unit for µ0 becomes 

s
2
/m

2
.   

      Once the unit of electric charge has been fixed in the mks system, the corresponding units for all other 

quantities that occur in the theory of electricity and magnetism are determined by the standard equations in 

which they occur.  A fairly extensive list of such quantities illustrating this point is given in Table 1.  The 

corresponding units are always given in terms of those of force, length and time in the mks system.  Two sets 

are given in each case, one in which the unit of charge is Nm and the other in which it is N
0.5

m.  The former is 

referred to as the Nms system so as to distinguish it from the standard mks system for purely kinematic 

quantities, the other as the N
0.5

ms system, in which ε0 is dimensionless. 

       Just a few examples will be given below which emphasize the practicality of the concepts introduced above.  

The unit of potential (or emf) U is dimensionless in the Nms system since it is proportional to electric charge 

and inversely proportional to ε0 and a distance given in m.  It has the unit of N
0.5

 in the other system based on the 

same definition.  Since the electric field E is the gradient of a potential, it follows that it has a unit of m
-1

 in the 

Nms system and N
0.5

/m in the other.  The unit of current I is Nm/s in the former case, while that of resistance R 

(I=V/R) is accordingly s/Nm.  In the N
0.5

ms system, R has the unit of s/m, i.e. the reciprocal of that of velocity, 

whereas the unit for I is N
0.5

m/s. 
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       In the Giorgi system of units, the magnetic force Fm for a given charge q moving with velocity v in 

magnetic field B is defined as: 

                     Fm  = q v × B.                                                                                              (3)  

It therefore follows that B has the unit of s/m
2
 in the Nms system and N

0.5
s/m

2
 in the N

0.5
ms system.  The Nms 

unit of magnetic flux (Weber in the Giorgi system or Tesla m
2
) is s, consistent with the requirement that an 

induced emf, which is dimensionless in the Nms system of units, is given by the derivative of the magnetic flux 

with respect to time.  In the N
0.5

ms system its unit is N
0.5

s.  It is easy to show that the units are consistent for 

Maxwell’s equations in both of these systems of units.  For example, the differential form of Faraday’s law of 

electromagnetic induction given by Eq. (4) has the units of m
-2
 on both sides in the Nms system and N

0.5
/m

2
 in 

the other. 

               curl E = - ∂B/∂ t,                                                                                               (4) 

 

III. A Simple Scaling Procedure for Electromagnetic Quantities 

The interdependency of the definitions of electric charge q and permittivity ε0 also presents other options 

for the choice of units for electromagnetic quantities than those of the Giorgi system.  The esu system of units 

[3] employs a much smaller unit of electric charge than Coul, for example, which therefore makes it 

unnecessary to include the 4πε0 factor in eq. (1), which is to say that in this system of units, ε0 = 1/4π.  The 

system of atomic units, in which the electronic charge e serves as the unit of electric charge, makes the same 

choice for ε0.  In the present section we will illustrate how the various electromagnetic units of the Giorgi 

system can be modified in a systematic manner so that the latter condition is also fulfilled for mks units. 

       To begin this discussion it is important to note that the value of ε0 in the Giorgi system is based directly on 

the speed of light in mks units: the value of 4πε0 is equal to 10
7
/c

2
.  Since the speed of light in free space is no 

longer measured but is simply defined by international convention to have the above value [4], it follows that 

there is also no need to determine quantities such as the Coulomb (Coul) and ε0 that are ultimately based on the 

value of c.  A convenient quantity with which to scale the various standard Giorgi units is, 

K = (4πε0)
-0.5 

= 10
-3.5

c ≈ 94802.   

In the following we will refer to the new set of units as the KNms system.  First, we define the corresponding 

value of the permittivity as ε0′ =K
2
ε0, so that 4π ε0′= 1 N.  In general, the units in the new system are those given 

in Table 1 under the Nms heading, that is, with the unit of electric charge equal to 1 J = 1 Nm.  It should be 

clear, however, that the numerical value attached to ε0′ in the new system is completely independent of this 

choice.  One could just as well choose the unit of charge to be N
0.5

m, for example, or any other combination of 

N, m and s, as long as one adheres to the requirements already discussed in Sect. II.   

      The objective in changing the numerical values of electromagnetic constants such as ε0 is clearly to simplify 

computations in this important area of physics.  One of the problems with changing over from the Giorgi to the 

Gaussian system of units is that in many cases this requires using different formulas for the same interaction.  

One can avoid this difficulty by agreeing at the outset that all formulas in the new KNms system will be the 

same as for the Giorgi system, since the latter have become standard over the past century.  Let us consider eq. 

(1) as the first example.   In order to retain the same form for this equation while using the above value for ε0′, it 

is simply necessary to change the numerical value of each electric charge.  Specifically, one has to change the 

unit of charge to K
-1

 Coul.   This means that the value of the electronic charge (e′ ) becomes K times larger than 

the standard value in Coul, i.e, e′ = 94802 x 1.602 x 10
-19

 J = 1.5187 x 10
-14

 J.   In effect then, the change from 

the Giorgi to the KNms system of units occurs by multiplying both the numerator and denominator in eq. (1) by 

the same factor (K
2
).   The result is that one has the same form for eq. (1) as in the Gaussian or atomic unit 

versions, i.e, where 4πε0= 1 and thus does not appear explicitly. 
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        The main point that the above discussion reveals is that it is useful to divide the variables that commonly 

occur in the theory of electricity and magnetism into classes according to the way in which their numerical 

values need to be scaled.  In the KNms system, this means that each such variable needs to be associated with a 

specific power of K.  This information has also been given in Table 1 in each case.  Since ε0′ = K
2
ε0, for 

example, it is necessary to multiply the Giorgi value for µ0 by K
-2

 in order to be consistent with eq. (2), that is, 

without changing the value of c.  As a result, µ0′ = 4π/c
2
.  Again, the preferred approach is not to eliminate ε0′ 

and µ0′ from the formulas in the KNms system, rather only to change their numerical values relative to those in 

the Giorgi mks system so that the form of the standard equations in the latter system is completely retained. 

Other quantities that belong to the same K-class in Table 1 as electric charge are charge densities ρ and σ, 

dipole moment µ, quadrupole moment Q, current I, current density J, magnetic dipole moment m, 

magnetization M and magnetic intensity H.  The corresponding quantities of K
-1

 type are: electric potential U, 

electric field E, magnetic field (or induction) B, magnetic flux Φ and magnetic vector potential A.  A check of 

all formulas in which the latter quantities appear shows that they always occur with counterparts in the K
 
class 

mentioned first, as, for example, q and B in eq. (3) or q and E in the corresponding expression for electric force.  

 

Table 1.   Correlation of the units of electromagnetic quantities in various systems.  The standard Giorgi system 

is compared with two alternatives, the Nms and N
0.5

ms systems, whose units are exclusively multiples of N, m 

and s in the standard mks system for strictly mechanical variables.  The quantities are also subdivided into K-

type scaling classes, as discussed in Sect. III.  

Quantity Symbol Giorgi Nms N
0.5

ms    Scaling class 

Electric charge q Coul Nm N
0.5

m K 

Permittivity ε or ε0 Coul
2
/Nm

2
 N ____ K

2
 

Current/mmf  I Amp Nm/s N
0.5

m/s K 

Permeability µ or µ0 N/Amp
2
 s

2
/Nm

2
 s

2
/m

2
 K

-2
 

Potential/emf  V Volt _____ N
0.5

 K
-1

 

Resistance/impedance R/Z Ohm s/Nm s/m K
-2

 

Electric field E Volt/m 1/m N
0.5

/m K
-1

 

Volume charge density ρ Coul/m
3
 N/m

2
 N

0.5
/m

2
 K 

Surface charge density σ Coul/m
2
 N/m N

0.5
/m K 

Electric dipole moment  µe mCoul Nm
2
 N

0.5
m

2
 K 

Electric quadrupole moment  Qij m
2 
Coul Nm

3
 N

0.5
m

3
 K 

Electric polarization P Coul/m
2
 N/m N

0.5
/m K 

Electric displacement D Coul/m
2
 N/m N

0.5
/m K 

Electric susceptibility χ Coul/mVolt N ____ K
2
 

Polarizability  α m
2
Coul/Volt Nm

3
 m

3
 K

2
 

Coefficient of potential pij Volt/Coul 1/Nm 1/m K
-2

 

Capacitance/coeff. of capacitance  C orcij Coul/Volt Nm m K
2
 

Current density J Coul/m
2
s N/ms N

0.5
/ms K 
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Conductivity g Coul/msVolt N/s 1/s K
2
 

Resistivity η msVolt/Coul s/N s K
-2

 

Magnetic flux Φ Weber s N
0.5

s K
-1

 

Magnetic induction B Weber/m
2
 s/m

2
 N

0.5
s/m

2
 K

-1
 

Magnetic vector potential A Weber/m s/m N
0.5

s/m K
-1

 

Magnetic scalar potential U* Amp N/ms N
0.5

m/s K 

Magnetic dipole moment M m
2
Amp Nm

3
s N

0.5
m

3
/s K 

Magnetization M Amp/m N/s N
0.5

/s K 

Inductance L Henry s
2
/Nm s

2
/m K

-2
 

Magnetic current per unit area Jm Amp/m
2
 N/ms N

0.5
/ms K 

Magnetic intensity H Amp/m N/s N
0.5

/s K 

Reluctance  R Amp/Weber Nm/s
2
 m/s

2
 K

2
 

Admittance Y Mho Nm/s m/s K
2
 

 

 

Some quantities do no not have to be scaled at all (K
0
-type).  They include all dimensionless quantities 

such as magnetic susceptibilities and refractive indices.  The same is of course true for all non-electromagnetic 

quantities such as force, energy and angular momentum.  A less trivial example is the Poynting vector (E × H), 

which is a product of a K
-1

- and K-type variable, respectively.  All other commonly occurring quantities are 

either of K
2
- or K

-2
-type.  In addition to ε0 among the former are the dielectric constant ε and electrical 

susceptibility χ (Table 1), as well as polarizability, capacitance, reluctance, conductivity and admittance.  Some 

examples of K
-2
-type are in addition to µ0:  permeability µ, resistance, coefficient of potential pij, resistivity η 

and inductance L.  The latter quantity is defined as dΦ/dI, which is a ratio of a K
-1

–type quantity to the current, 

which is of K-type. 

      The conversion factors between the Giorgi and the present KNms systems of electromagnetic units for a 

number of the most commonly used quantities are given in Table 2.  Unlike the case for the corresponding 

conversion between the Gaussian and Giorgi systems [3], the formulas in which they are to be used respectively 

are exactly the same, as discussed above.  To be specific, we have given these factors as functions of c rather 

than of K itself.  Clearly, any other value of K could be used while still allowing the Giorgi formulas to be 

retained in the new system of units.  The value of the electric charge in any such system of units is K times that 

of the numerical value in the Giorgi system (e=1.602x10
-19

).  As long as one adheres to the scheme of dividing 

the variables into K-type classes according to the prescriptions of Table 1, this information is sufficient to 

characterize any new system of this type.  In other words, the scaling procedure is always perfectly defined by 

the value chosen for K in a specific instance.   

 

Table 2. Conversion of various electromagnetic units from the Giorgi to the KNms system discussed in Sect. III 

(c is the speed of light in free space, 2.99792458x10
8
 m/s).  

Quantity Giorgi KNms 

Electric charge 1 Coul 10
-3.5

c Nm 

Electric current 1 Amp 10
-3.5

c Nm/s 
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4πε0   10
7
c

-2
  Coul

2
/Nm

2
 1 N 

µ0/4π 10
-7
 N/Amp

2
 c

-2 
s

2
/Nm

2
 

Electric field 1 Volt/m 10
3.5

 c
-1

 1/m 

Potential 1 Volt 10
3.5

 c
-1

 

Magnetic induction 1 Weber/m
2
 10

3.5
 c

-1
  s/m

2
 

Magnetic intensity 1 Amp/m 10
-3.5

c N/s 

Magnetic flux 1 Weber 10
3.5

 c
-1
  s 

Electric displacement/polarization 1 Coul/m
2
 10

-3.5
c N/m 

Capacitance 1 Farad=Coul/Volt 10
-7
c

2
 Nm 

Inductance 1 Henry 10
7
c

-2
  s

2
/Nm 

 

 

 

IV. Conclusion  

      Over time we have come to believe that we experience electric charge directly, but the fact is that this is 

only a theoretical quantity that allows us to calculate the Coulomb force between particles at any distance.  

Force is something very tangible whereas charge is not, despite what our intuition and training tell us.  The 

determination of a B field also can only be accomplished by measuring the force between electric charges in 

relative motion.  All the other myriad quantities mentioned in Table 1 have definitions that in one way or 

another involve explicit measurements of such forces.  As long as one remains consistent, that is, adheres to the 

simple restrictions outlined in Sect. II, one system of electromagnetic units will inevitably lead to the same set of 

measured values for force, distance and elapsed time as any other.   
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