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Abstract 

Inspired by the Poincare model of the electron, elementary fermions are assumed to be bubble 

like structures with negative internal pressure and a size corresponding to a radius or 

equivalently an ultraviolet cut-off. Negative pressure, self-interaction of gauge fields up to the 

cut-off energy and gravity contribute to the self-energy. All corrections are considered to be 

proportional to the observed mass of the fermion in order to preserve chiral symmetry in the 

limit of vanishing fermion mass. Fermion self-energy is thus constituted of terms; inverse cubic, 

logarithmic (as in qed self-energy of the electron), linear and quadratic in the cut-off parameter 

and defines coupling coefficients. The latter two terms originating from gravity are fixed on 

basis of dimensional considerations. The condition of extremization of total energy to determine 

equilibrium states, leads to a quantic equations with three real roots, giving three values for the 

fermion mass, for each set of coupling coefficients. The model represents observed quark – 

lepton mass ratios explaining generation problem and suggest possible numerical values for 

neutrino masses in agreement with the oscillation data in an inverted order. As a result of 

incorporation of gravity, Planck energy sets as the natural physically meaningful scale, deriving 

other scales corresponding to sizes of elementary fermions ranging from Planck length to few 

thousand times this unit. The model interprets, the physical quality distinguishing a generation 

as the phase of the false vacuum ‘inside’ the elementary bubble. The unconventional approach 

behind the model may also have implications on unifications of couplings, incorporation of 

gravity into the standard model and issue of divergences in quantum field theories. 

Keywords:  Fermion generations, Lepton-quark masses, Neutrino masses, Standard Model and 

gravity, Beyond Standard Model 

1. Introduction 

 The standard of model (SM) is tremendously successful in explaining pattern of the hadron 

spectrum and calculating scattering amplitudes involved in interactions between leptons and quarks 

mediated by gauge bosons [1-2]. Spontaneous breaking of SU (2) x U (1) symmetry in SM accounts 

for existence massive vector bosons, leptons and the scalar Higgs particle [1-6]. However, SM fails 

to determine the masses of leptons and quarks and explain why they replicate into three generations 
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[7-11]. Again SM demands neutrinos to be massless, contrary to the evidence from neutrino 

oscillation experiments, which clearly indicate that these particles possess definite but minute mass 

[12-13]. Presence of widely separated energy (mass) scales and leaving gravity aside are other 

undesirable features of the SM. The critical of problem of SM is its inability to compute the self- 

energies of the basic entities, as expressions derived turns out be divergent in the limit of point 

particles. The renormalizability [14] of the theory, enables calculations of many useful observables 

except masses.  

In classical models of the electron, the divergence of the self-energy was avoided by assigning a 

finite size to the election.  Abraham and Lorentz considered electron as bubble of radius r with an 

evenly distributed surface charge Q. Equating electrostatic energy Q
2
/ (4πεο r) to mec

2
, a finite value 

is obtained for electron radius [15-16]. Poincare noted that the above model is unstable and 

introduced a non-electromagnetic stress to stabilize the electron [17]. In modern language Poincare 

stress is equivalent to a negative pressure P inside the bubble. Thus mass m of the bubble can be 

written as, 

m =   (4π r
3
P)/3c

2
   +   Q

2
/ (4c

2πεο r)                             (1) 

The expression (1) is minimum when r = re =  Q
2
/ (32πεο P) , giving  

 mmin   = Q
2
/ (6 c

2πεο re) =  me                                       (2) 

The electron radius re obtained from (2) is nearly three orders of magnitude smaller than the 

electron Compton wavelength – a value ruled out by experiment and also untenable, because at this 

dimensions of length, QED vacuum polarization overrules classical electrostatics. In a recent note, 

the author examined a semiclassical model of leptons [18], where the second term in (1) is replaced 

by the QED expression for correction to electron self-energy [19] given by, 

(δm) qed   =   (3α /2π) m [ln{ħ/ (mcr)} + ¼]                                  (3) 

so that, 

m =   (4π r
3
P)/3c

2
   +   (3α /2π) m [ln{ħ/ (mcr)} + ¼]                 (4) 

The expression (4) is minimum when, 

r =   (ħ/ (mc) exp {- (2π/3α)  + 7/12 }                                         (5) 

At the lengths scales involved in (5), the fine structure constant α could be renormalized to a 

value nearly an order of magnitude larger than infrared limit (~ 1/137) and if the tau lepton radius is 

assumed to be of the order of Planck length, radii of the muon and electron turns out one and two 

orders of magnitude larger [18].  

Inclusion of gravity to generate finite self-energies in classical and quantum objects has been an 

attractive hypothesis receiving continued attention [20-29] .Here I extend the idea discussed above 

by incorporating contributions to self- energy of elementary fermions expected to originate from 

gravity. The results are encouraging and seem to provide clues to resolve puzzles of lepton-quark 

generations their mass hierarchies and the problem of divergences in quantum field theories. 
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2. Discussion 

An important point that needs be emphasized is the fact the QED correction to electron self-

energy (δm) qed given by (3) is proportional to observed electron mass [2, 30]. Essentially, this is a 

requirement that in limit of zero fermion mass, the chiral symmetry of the theory is guaranteed - a 

condition originating from the fact that the term    mψ ψ  in the Lagrangian is not invariant under 

the transformation ψ → exp iθγ5ψ. Similarly to preserve the chiral symmetry in the limit of zero 

mass, all the other correction to the self-energy of elementary fermions should be proportional their 

masses. Again higher powers of m in corrections should also be excluded because the mass term in 

the corrected the final Lagrangian should also look like mψ ψ once all corrections are included.  

Therefore I conjecture that P in (4) denoting negative pressure should be written as, 

P = mκ                                                                   (6) 

where κ = a constant so that the correction to the self-energy originating from negative pressure   

(δm) np [first term in Eqn. (4)]  is,        

(δm) np     =     (4π r
3
m κ)/3c

2
                                    (7) 

Now I look for corrections to self-energy originating from gravity that are directly proportional to 

mass. In absence of an adoptable quantum theory of gravity, I simply consider dimensions and 

arrive at two terms  -(GmMp)/c
2
r and Gme

2
/ (c

2εο r2
 ) , where G = gravitational constant, Mp =  

Planck mass and  e = electronic charge. The latter term is taken to be positive for the following 

reason. Suppose the bubble contracts due its own gravitation, then the electric field (vacuum 

polarization) increases – giving gravity coupled to electromagnetism a positive contribution. The 

other possible terms will be of higher order in G or e
2
. Thus the contribution to self-energy from 

gravity (δm) gr   can be written as, 

(δm) gr   = - (ηGmMp)/c
2
r   + (γGme

2)
/ (c

2εο r 
2
)                                              (8) 

where η and γ  are  dimensionless constants of proportionality. 

Hereinafter I proceed with units ħ = c = G = 1 so that Planck length Lp = 1   and Planck mass Mp 

= 1 and replace r by Λ-1
   , to transfer from length scale r to an energy scale Λ, measured in Planck 

units. With this simplification, self-energy- the sum of corrections [  (δm) np + (δm) qed + (δm) gr] 

takes the form, 

 m = [(4πmκ)/3] Λ−3
   +   3(α m)/2π[ln (Λ/m) + 1/4}]  - ηmΛ   +  γαmΛ2              (9) 

The last term in (9) is the much feared quadratic divergence which workers strive to eliminate. 

Contrary to this belief, it is an important attribute that could save SM of its flaws. The number   α in 

(9) should now be considered as a unified gauge coupling constant the yielding a logarithmic 

divergence for leptons as well as quarks.  The common multiplicative m (≠ 0) in (9) disappears and 

(9) can also written as, 

m  =  Λ exp{ [(8π2 κ))/9α]Λ−3   
-  [ ([(2πη)/3α] Λ   +  [(2πγ )/3] Λ2

   - [2π//3α -  ¼] }              

      = Λ exp { (d/3b)Λ−3   
-  (a/b) Λ   +  (1/2b) Λ2

   - (2π//3α -  ¼)  }               (10) 

where the positive constants a, b and d are related to coupling coefficients  η, γ ,α    via relations, 
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a   =   η/(2γα)  ,  b =   3/ (4πγ)   ,  d    = (2πκ)/γα                                           (11)  

The condition dm/dΛ = 0 yield the quantic equation,  

Λ5 
-   aΛ4

   + bΛ3
    - d   =    0                                                                          (12) 

Again from (10), at   dm/dΛ = 0, 

 d
2
m/dΛ2

   = m (bΛ) -1 [3dΛ-4
   - a   + 2 Λ]                                                      (13) 

Thus real roots Λ i of the quantic (12) corresponds to equilibrium values of m and using (10), (11) 

and (12), the allowed masses mi   can be expressed as, 

mi    =   CoΛi exp [(5/6b)Λi
2  

-   (4a/3b) Λi  ]                                              (14) 

where,  

Co =   exp – [2π/3α -7/12]                                                                         (15) 

Note that the constant d does not appear explicitly in (14), masses mi depend on constants a, b and  

Λi  derived from (13) .   Suppose the variable Λ  in (12)  is transformed to Λ′ =  fΛ  , where f  is a 

scaling factor  the coefficients of the quantic will transform as a′→ af   , b′→  bf 
2
  , d′→ df

 5
. Under 

the same transformation (14) will transform as, 

m′ i    =  [ (Co f )Λi ] exp[  (5/6b′) Λi
2  

-   (4a′/3b′) Λi  ]                                 (16) 

Thus the mass ratios mi/ mi   are unaltered by the scale transformation. As detail information 

regarding the values of coefficients a, b and d defined by (11) are unavailable, the above property of 

(12) opens an avenue to compare the mass ratios by fixing one of the coefficients (a or b) arbitrarily 

with re-definition of the constant C in (14) as Cf. Therefore without loss of generality, I set b = 1 in 

(11), (12) and (14) and confine subsequent analysis to the following simplified equations, 

Λ5   
-   a Λ4

   +  Λ3
    -  d   =    0                                                                  (17) 

mi    =   CΛi exp [(5/6) Λi
2  

-   (4a/3) Λi ]                                                 (18) 

where C = Co f   = f exp – [2π/3α -7/12] 

 Equation (17) has three real positive roots provided, 

   a >2   and d <   d L                                                                                  (19) 

 where d L is a limiting value dependent on a, but not expressible as a familiar function of a (well-

known algebraic property of quantic equations [31] ). Thus it follows from (18), when (19) is 

satisfied there are three equilibrium points of (10) corresponding three masses m1, m2, m3 . Fixing 

values of a and d defines a generation of three members.  

It is easy to show that the possible values of mi   for each generation has a maximum m max and 

minimum   m min    and their ratio is given by, 

m max / m min      =    [ 1 + √(1 – 15/4a
2
)] [1 - √(1 – 15/4a

2
 )]

-1
 exp { -4a/5√(1 – 15/4a

2
) }     (20) 

As a   > 2, it follows from (20), that the three masses in each generation has lower and upper 

bounds mL and mU and their ratio satisfy the relation, 

    mL/mU      >   (5/3) exp (-2/5)   = 0.11176                                          (21) 
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The above result derived independently of the value of any constants is obviously satisfied by 

leptons and quarks and tells that elementary fermions needs to be massive. Masses of these 

fermions, three in number are bounded from below and above. 

Except in special cases, the roots of a quantic equation cannot be expressed as a formula 

involving the coefficients of the powers of the variable x [31]. Numerical analysis reveal that that 

equations (17) and (18) have solutions agreeing with the observed mass ratios of charged leptons 

and quarks. When one mass ratio is used as an input to fix the unknown parameters, the other ratio 

computed, agrees with observation.  

Case I     a = 4.9599, d = 3.700 x 10
-8

. Here roots of the equation (17) are Λ 1 = 4.74934, 

Λ2 = 0.21055, Λ3 = 3.351 x10
-3

. Inserting these values in (18), the ratio of masses obtained is 

m1: m3:m2   =    1: 206.7: 3429. The observed charged (Q = 1) lepton mass ratio is me: mmu: mtau   = 1: 

206.8: 3482 

Case II   a = 5.5926   , d = 3.508 x 10
--11

. Corresponding roots of the equation (17) are Λ 1 = 

5.40768, Λ2 = 0.18492, Λ3 = 3.280 x 10
-4

. Insertion of these values in (18), gives the mass ratio m1: 

m3: m2   =     1: 514: 75262. The observed Q = 2/3 quark mass ratio is mup: mc: mt   = 1: 554: 75309. 

Case III   a = 4.646   , d = 2.30 x 10
-9

, yield roots Λ 1 = 4.4197, Λ2 = 0.2263, Λ3 = 1.324x 10
-3

. 

Inserting these values in (18), the ratio of masses obtained is m1: m3: m2   =      1: 19.7: 871. The 

observed Q = 1/3 quark mass ratio is 1: 19.8: 872. 

 It is interesting to note that the increasing order of mass values (m1: m3: m2)   is not the decreasing 

or the roots (Λ 1:Λ 2 : Λ3 ).  The result is understandable because in the expression (18) for mi 

depends on Λi linearly as well as exponentially and exponential factor is negative when Λ < 5a/5. 

Furthermore, it follows from (13) that m1 and m3 corresponds to minima of m, whereas m2 happens 

to be a maximum. In this situation, tau lepton and bottom and top quarks are unstable equilibrium 

points of m and all the other quarks and charged leptons corresponds to minima of m (Fig.1). 

Masses m1 corresponding to electron, up and down quarks is an absolute minimum implying there 

stability (this does not forbid up, down quark transformation via virtual W boson exchanges in 

energetically permitted interactions). Muon, charm and strange quarks corresponds to metastable 

position m3 and m2 represents unstable points of equilibrium corresponding to tau lepton and top 

and bottom quarks 

It is interesting that there is indeed a reason why the tau lepton, top quark or the bottom quark 

sitting on peak 2 (Fig.1) are not falling down to the valleys on either side   ‘instantaneously’. Flavor 

changing neutral currents are forbidden by SM and seem to be heavily suppressed according to 

measurements [32]. .Even classically, an equilibrium corresponding to a maximum in energy is not 

always ruled out of existence. A boulder in a valley between two mountains is absolutely stable. A 

boulder can also safely sit on the mountain peak, but never on a slope.  Small extraneous influences 

can stabilize systems in equilibrium with maximum energy. Well studied example is the classical 

and quantum inverted pendulum [33]. When it comes to rapidly decaying particles it is hard to 

distinguish metastability and unstable equilibrium. 
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Case IV   a = 2. This is the smallest possible value of a giving smallest possible masses according 

to the model and could correspond to neutrinos. Neutrino oscillation data indicate that the character 

of their mass ordering is two particles of nearly equal mass and a third with   a significantly smaller 

or larger value. When a =2 and d = 0, equation (17) has two equal roots each equal to unity and 

three zero roots, leading to two degenerate non - zero masses  via (18). If d   is non-zero and small 

(d <   d L = 0.03455), the two roots manifest a small difference and a third acquire a small positive 

value and remaining two roots become complex. Thus according to (18) there will be two nearly 

equal masses and smaller third mass. Such solutions of (17) and (18) exists when d is of the order of 

10
-2

. The mass ratios obtained by setting   a = 2, d = 0.0142 agrees with neutrino oscillation data.  

The roots of (17) obtained here are Λ1   = 1.10288,   Λ2   =  0.84718  ,  Λ3 = 0.31020 and the mass 

ratio calculated using (18) is m3: m1: m2 = 1:  1.089: 1.092.  Thus neutrino oscillation experimental 

value ∆23 = m2 
2
 - m3

2
   = 2.50 x 10

-3
 eV

2
, leads to masses m3 = 11.42x10

-2
,   m1 = 12.47 x 10

-2
, m2 = 

12.50 x 10
-2

 eV giving ∆21= m2 
2
 - m1

2
 = 7.5 x 10

-5
 eV

2
. Here again this is not mere fitting data. The 
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input ∆23 yields neutrino masses and ∆21 derived agrees with the experimental limit. The result hints 

to the idea that all elementary fermion masses could originate from the same dynamical mechanism. 

Here again, m3   and   m1 are minima and m2 a maximum. It is interesting that model explain the 

hierarchical pattern of charged lepton and quark masses and suggest a quasi-degenerate inverted 

ordering for neutrino masses [34-35]. Above neutrino mass values and ordering are not ruled out by 

latest analysis of experimental data [42].  

It appears that according to the model, masses of all observed elementary fermions are 

represented in the equation (17). 

Inserting the observed values of masses for the sectors   Q = 1, 1/3, 2/3 and values of neutrino 

masses calculated on basis of the model using neutrino oscillation data for Q = 0   in Eqn. (18) ,the 

quantity [1/α − (3/2π)lnf ]  can be evaluated .  The numbers obtained are ~ 19.6, 17.4, 19.9 and 30.0 

for Q = 1, 2/3, 1/3 0 respectively The model requires that α is a constant for a sector of given Q,   

The similarity of  above numbers for all  charged fermions ,  suggest that the gauge coupling 

constant α could also be universal (same for all quarks as well as charged leptons) and the factor f  

varies slightly from sector  to sector ( because of  the  variation of other constants ) . 

The model explain occurrence of three generations of fundamental fermions, consistent with their 

observed masses. Mass generation dynamics depends on three coupling constants: (i)   gravitational 

constant G (ii) a gauge coupling constant α    (iii) a constant κ  relating fermion masses to a an 

energy density P via the relation   P = m κ   . Constant G is universal and the results suggest that α 

may also be universal (same all charged fermions and the value of α corresponding neutrinos (1/30) 

is almost exactly equal to  so-called weak fine structure constant αW  which compares strengths of 

weak and electromagnetic interactions.   

In the present model, dynamics create masses of elementary fermions. It is well known that 

fermion masses could be generated without invoking Higgs mechanism and many such models 

formulated does not contradict SM [39]. In this scenario, Higgs mechanism give masses to vector 

bosons via spontaneous symmetry breaking and the necessary non-zero value for its vacuum 

expectation value demand existence of massive fermions. This argument is fully consistent with SM 

and all experimental data, including observation of the Higgs boson. Yukawa coupling constants are 

non-zero proportionality parameters. According to the present model occurrence of three lepton – 

quark generations, and observed non-zero   masses demand κ  ≠  0 as P= m κ 
 (Eqn.8).   From 

condition b = 1 and (11), it follows that κ  = dα/2π. Thus, all elementary fermions with given value 

of Q corresponds to same value of κ . If P which is a negative pressure or positive energy density is 

written as Mv
4
, the values of this mass scale Mv calculated from the model (using values of d) are 

approximately 6 x10
9
, 8 x 10

10
 and 6 x 10

9
 GeV (Planck mass taken as 1.2 x10

19 
GeV) respectively 

for first, second and third generations. Thus each generation could be considered as corresponding 

to three phases of a nearly degenerate false vacuum and flavor an attribute associated with the 

phase. In the picture analogous to the Poincare model of the election, the phase of the vacuum 

inside the bubble exits in three phases.  The interesting possibility of existence of vacuum levels 
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above the Higgs minimum has been considered previously [36-38]. Other scales appearing the 

model are values of Λi ranging from the order of Planck scale to around 10
-3

 times less. Highest 

scale encountered in the model corresponding to the largest value of Λi is 6.5x 10
19

GeV- possibly 

an ultimate cut-off or equivalently a size in the Planck scale. According to the model smallest 

elementary entity is the up-quark (subject to somewhat ill-defined mass of up-quark used in the 

calculation) followed by the electron and the largest is the top quark. 

 The model suggests that  symmetry breaking scale responsible for fermion mass generation 

should be of the order of 10
10

 GeV (lowest of the scales involved ) or larger and the therefore does 

not contradict experimental results. In this scenario , SM electroweak symmetry breaking via Higgs 

mechanism give masses to vector bosons  and Higgs field couples to massive leptons.  

The proportionality of the term (δm)gr    [eqn.(8) ] to G and m  neatly accommodate Planck energy 

scale.. The coefficients γ and η may be calculable when the model is developed into a theory 

combining gravity and SM. The highest energy scale in the model is of the order of the Planck scale 

(MP = √ [ħc/G] = 1).The other energy scales – the values of Λi    (ranging from 5 – 10
-4

 of the 

Planck scale) are dynamically generated by the model and not constrained by experiment. Again 

these values looked upon as ultra-high energy cut-offs will not contradict SM renormalization 

scheme and in a way resolve the divergence problem. These scales which appear as divergence in 

conventional QFT thinking are points of stabilization of the self-energy. 

   

3. Conclusion 

The basic idea of the model is minimal finite size of elementary fermions as a ‘bubbles’ and 

forces above its radius, described by gauge fields contributing to mass. To achieve stability as in the 

Poincare classical model, the bubble inside is assumed to possess a negative pressure. This pressure 

also contribute to mass. The other known force gravity also contribute to mass and possible 

corrections identified on basis of dimensional considerations. A crucial argument abided by has 

been assuming direct proportionality all corrections to observed mass itself, so that preservation of 

chiral symmetry guaranteed in the massless limit. Total energy (mass = m) of the bubble originating 

from all contributions is a function of the radius r or equivalently a cut-off energy scale Λ. The 

condition of equilibrium imposed as an extremization of energy leads to a quantic equation with 

three real roots corresponding three masses. The values of the coefficients of the equation (17) 

remain undetermined and quantic equations are insolvable in terms of familiar functions. 

Consequently, the numerical analysis required to determine if the solutions, could represent 

observed fermion masses was a formidable problem. Fortunately, the observation that mass ratios 

given by the model remain scale invariant enabled simplification and use a quantic equation solver 

[42] to perform most calculations.   The solutions represent the mass ratios of leptons and quarks 

remarkably close to the observed values, explaining mass hierarchy. It is very unlikely that a 

conventional perturbative approach will be able to explain occurrence of   three quark lepton 

generations with masses that appear to scale unnaturally. Model has also made suggestions 



K. Tennakone                      Journal for Foundations and Applications of Physics, vol. 6, No. 1 (2019) 

52 
 

regarding neutrino masses. The values of masses of obtained are consistent with neutrino oscillation 

data and other limits. 

The model suggest that the core of elementary fermions belonging to a generation is associated 

with distinct phase of false vacuum so that there are three phases corresponding to flavor. The 

fundamental nature of phases of matter has been recognized by ancients as well as modern 

physicists. Gautama Buddha preached that universe is constituted four basic entities; ‘patavi’ (earth-

solid), apo (water-liquid), ‘vayo’ (air -gas), ‘thejo’ (fire-plasma). The first attempt to understand 

phase transitions by Van der Waals led to a cubic equation. A recent model attempting to explain 

the three phases of matter (solid, liquid, gas) is based on a quantic equation [41], very similar to the 

one presented in this work. It is amazing to speculate why false vacua also exists in three phases.  

The last challenge of classical electromagnetism was explaining mass and inertia as 

electromagnetic consequences. When the idea failed Poincare introduced non-electromagnetic 

forces. The next attempt was QED calculation of the electron self-energy, which turned cut-off 

dependent and logarithmically divergent. However, the self-energy problem in QED paved way for 

the renormalization scheme. The standard model strongly suggest that, the problem of mass reside 

largely in the electroweak sector. However, explaining lepton-quark masses  doesn’t seems within 

its domain  indicating the necessity of invoking other forces and the only known force not 

connected to SM is gravity. Color forces probably have little significance in determining fermion 

mass spectrum, especially if the masses generated at a unification scale.  Thus a reasonable, first 

step in going beyond SM should be amalgamation of SU(2) x U (1) and gravity. The present model 

suggests that such a scheme will enlighten, understanding of the problem of mass, resolving flaws 

in SM. Point mass seems to be an impossibility and minimum length scales have been considered 

previously [44]. With the length scales involved here, there is no practical violation of Lorentz 

invariance. Obtaining full consistency for minute finite sizes would be a matter for a future theory. 
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