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Abstract 

We present a method of constructing PT-symmetric sextic oscillators using quotient polynomials 

and show that the reality of the energy spectrum of the oscillators is directly related to the PT 

symmetry of the respective quotient polynomials. We then apply the method to derive sextic 

oscillators from real quotient polynomials and demonstrate that the set of resulting oscillators 

comprises a quasi-exactly solvable system that contains the real, quasi-exactly solvable sextic 

oscillator. In this framework, the classification of the PT-symmetric sextic oscillators on the 

basis of whether they result from real or complex quotient polynomials is a natural consequence.  

 

Keywords:  PT symmetry, sextic oscillators, quasi-exact solvability, quotient polynomials 

1. Introduction 

 In PT-symmetric quantum mechanics, the “traditional” Hermitian Hamiltonians are replaced by 

PT-symmetric Hamiltonians, i.e. by Hamiltonians that are invariant (unchanged) under the 

combined action of parity (space reflection) and time reversal
1
 [1]. PT symmetry in quantum 

mechanics was first proposed by Bender and Boettcher in 1998 [2], with the introduction of a class 

of non-Hermitian, PT-symmetric Hamiltonians with real spectra, and rapidly became an active area 

 

 
1
 Parity and time reversal are two important discrete transformations, which are represented by the 

operators P̂  and T̂ , respectively. By definition, the parity operator changes the sign of the position operator, 

and also, it changes the sign of the momentum operator (to understand why, you may think classically). 

Then, as it leaves the position-momentum commutator unchanged, it must also leave unchanged the 

imaginary unit, since  ˆ ˆ,x p i , and as a result, the parity operator is linear. On the other hand, the time-

reversal operator leaves the position operator unchanged (time reversal is independent of space reflection), 

but it changes the sign of the momentum operator, as it changes the sign of time. Thus, the time-reversal 

operator changes the sign of the position-momentum commutator, and as a result, it must also change the 

sign of the imaginary unit, which means that it is an antilinear operator. 
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of research in theoretical physics, with more than two thousand papers already published and many 

international conferences devoted to the subject [3]. Also, in 2007, El-Ganainy et al. [4] 

demonstrated the connection of PT-symmetric quantum mechanics to optics and the first optical 

experiments were conducted, which were followed by many more, in such diverse areas of applied 

physics as optical wave guides, lasers, microwave cavities, superconducting wires, graphene, and 

metamaterials [5-8]. 

 PT-symmetric Hamiltonians can have the two fundamental properties that any consistent 

quantum theory possesses: real energy eigenvalues and unitary time evolution (probability 

conservation) [1]. In quantum mechanics, complex potentials generally model open, i.e. non-

isolated, systems that exchange energy with their environment. Particularly, a complex potential 

with positive imaginary part describes a system that absorbs energy from its environment, while a 

complex potential with negative imaginary part describes a system that releases energy to its 

environment. However, a purely imaginary and antisymmetric potential, which is thus PT-

symmetric, models a balanced distribution of sources and sinks of energy in space [9], and then a 

complex PT-symmetric potential models a system interacting with its environment in such a way 

that its energy loss and gain are balanced. 

 The introduction of PT-symmetric Hamiltonians was followed by the introduction of new 

quasi-exactly solvable PT-symmetric potentials. In this framework, PT-symmetric sextic potentials 

were introduced and studied [10, 11]. The purpose of the present paper is to use the quotient-

polynomial approach we presented in [12] to construct PT-symmetric sextic oscillators and exploit 

the option to derive complex oscillators from real quotient polynomials. In addition, we wish to 

demonstrate that the set of PT-symmetric sextic oscillators resulting from real quotient polynomials 

comprises a quasi-exactly solvable system that contains, as a special case, the real, quasi-exactly 

solvable sextic oscillator, and also to highlight a new classification of the PT-symmetric sextic 

oscillators on the basis of whether they come from real or complex quotient polynomials.  

 The rest of the paper is organized as follows: in the next section, making an ansatz for the wave 

function, we introduce the quotient polynomial and use it to construct PT-symmetric sextic 

oscillators, demonstrating that the PT invariance of the quotient polynomial is a necessary and 

sufficient condition for the reality of the energy spectrum of the respective oscillator. In section 3, 

taking advantage of the option provided by our approach, we construct complex oscillators from 

real quotient polynomials. We specifically examine the cases where the non-negative integer 

parameter of the potential takes the values 0, 1, 2, and 3, and show that the set of resulting 

oscillators contains the real, quasi-exactly solvable sextic oscillator and becomes richer as the 

parameter increases, which signifies the quasi-exact solvability of the system. Finally, in section 4, 

we summarize and conclude. 
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2. Construction of PT-symmetric sextic oscillators from quotient polynomials 

 In line with the analysis presented in [12], we choose a length scale l  and do the 

transformations x lx , 2 22E E ml , and    2 22V x V x ml . Then, the position x , the 

energy E , and the potential  V x  become dimensionless and the stationary Schrödinger equation 

for our system reads 

        0x E V x x     ,  

where  x  is an energy eigenfunction of the system. 

 Next, we establish our ansatz scheme by seeking eigenfunctions of the form 

       4expn nx A p x g x   (1)  

 where nA  is the normalization constant,  np x  is an n -degree polynomial, and  4g x  is a 

fourth-degree polynomial with negative leading coefficient so that (1) is square-integrable in 
2
. 

Since x  is dimensionless, the dimensions of  np x  is carried by its coefficients. Thus, 

incorporating the leading coefficient of  np x  into the normalization constant nA , we make  np x  

both monic and dimensionless. As exponent, the polynomial  4g x  must be dimensionless too, and 

since x  is dimensionless, the coefficients of  4g x  are also dimensionless. The constant term of 

 4g x  is a multiplicative constant to (1), thus it can also be incorporated into the normalization 

constant nA . Finally, choosing the length scale l  appropriately, we can set the leading coefficient of 

 4g x  to a desirable negative value and without loss of generality, we write  4g x  as 

   4 3 23 2
4 1

1

4 3 2

g g
g x x x x g x      (2)  

  If the polynomial (2) is not PT-symmetric, the eigenfunction (1) cannot be either even or odd 

under PT-symmetry, and, in this case, the PT symmetry is broken [1]. Since we wish to explore the 

possibility that the PT symmetry remains unbroken, we demand that the polynomial (2) is PT-

symmetric, which means that the coefficients 1g  and 3g  are imaginary, while 2g  is real. 

 Plugging the ansatz eigenfunction (1) into the stationary Schrödinger equation and solving for 

the potential yields 

  
     

 
   4 2

4 4

2n n

n

p x g x p x
V x g x g x E

p x

  
       

 

 
2
 Generally, the stationary Schrödinger equation for PT-symmetric potentials is solved along a properly 

chosen contour on the complex plane [1]. However, for the potential we examine, it suffices to solve the 

equation on the real axis. 
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In the last equation, the potential and the expression    2

4 4g x g x E    are polynomials, thus 

their difference is also a polynomial, and then the expression         42n n np x g x p x p x    is a 

polynomial too. Moreover, this polynomial is quadratic, since 

 
          

     

4 4 4

4

deg 2 deg 2 deg deg deg

deg deg deg 3 1 2

n n n n n n n n

n n

p g p p p g p p g p p

g p p n n

            

        

  

Thus, we can write 

          4 22 ;n n np x g x p x q x n p x      (3)  

where 

        2

2 2 1 0;q x n q n x q n x q n    (4)  

We’ll refer to  2 ;q x n  as the quotient polynomial. The minus sign on the right-hand side of (3) is 

put in for convenience. 

 Using (2) and (4), (3) is written as 

               3 2 2

3 2 1 2 1 02n n np x x g x g x g p x q n x q n x q n p x           (5)  

Since  np x  is monic, the highest-order terms on the left and right hand sides of (5) are, 

respectively, 22 nnx   and   2

2

nq n x  , thus 

  2 2q n n ,  

and then the quotient polynomial (4) and the differential equation (5) are respectively written as 

      2

2 1 0; 2q x n nx q n x q n    (6)  

             3 2 2

3 2 1 1 02 2n n np x x g x g x g p x nx q n x q n p x           (7)  

 

 In terms of the quotient polynomial, the potential is written as 

        2

2 4 4;V x q x n g x g x E       (8)  

Since the polynomial  4g x  is assumed PT-symmetric, its first derivative is odd, i.e. it changes 

sign, under PT symmetry, while its second derivative is PT-symmetric, as it is easily seen by (2). 

Therefore, the polynomial    2

4 4g x g x   is also PT-symmetric, and since we want the potential 

to also be PT-symmetric, from (8) we derive that the polynomial  2 ;q x n E  must be PT-

symmetric too. But, using (6), we have 

      2

2 1 0; 2q x n E nx q n x q n E     ,  
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and the action of a PT transformation on  2 ;q x n E  then yields 

     
*2 *

1 02nx q n x q n E   ,  

where the asterisk denotes complex conjugation. For the polynomial  2 ;q x n E  to be invariant 

under the PT transformation,  1q n  must be imaginary, while  0q n E  must be real. Then, if the 

energy is real  0q n  is also real and the quotient polynomial is then PT-symmetric, and conversely, 

if the quotient polynomial is PT-symmetric,  0q n  is real, and then the energy is real too. 

Therefore, the quotient polynomial is PT-symmetric if and only if the energy is real. 

 The potential (8) is expressed up to an additive constant and to determine it uniquely, we 

choose its value at zero to be zero, i.e.  0 0V  , which, by means of (2), (6), and (8) reads 

    2

0 1 2E q n g g    (9)  

Since 1g  is imaginary and 2g  is real, the expression 2

1 2g g  is real, as is the constant term  0q n  

of a PT-symmetric quotient polynomial, and then (9) gives real energies, as it should. Then, using 

(2) to express the first and second derivatives of  4g x  and substituting into (8) along with (6) and 

(9), we finally end up to 

 
        

  

6 5 2 4 3 2 2

3 3 2 2 3 1 2 1 3

3 1 2 1

2 2 2 2 2 3

2 2

V x x g x g g x g g g x g g g n x

g g g q n x

         

  
(10)  

Since 1g  and 3g  are imaginary, 2g  is real, and  1q n  is imaginary, the couplings 2

3 22g g  and 

 2

2 1 32 2 3g g g n    are real, while the couplings 2 3 1g g g  and  3 1 2 12 2g g g q n   are 

imaginary, and then the potential (10) is a complex PT-symmetric sextic oscillator. 

 

3. Complex oscillators from real quotient polynomials 

 The PT-symmetric quotient polynomial (6) is real if and only if  1q n  vanishes. In this case, 

the differential equation (7) and the potential (10) become, respectively, 

           3 2 2

3 2 1 02 2n n np x x g x g x g p x nx q n p x          (11)  

 
        
 

6 5 2 4 3 2 2

3 3 2 2 3 1 2 1 3

3 1 2

2 2 2 2 2 3

2

V x x g x g g x g g g x g g g n x

g g g x

         

 
(12)  

 

We’ll construct PT-symmetric sextic oscillators from real quotient polynomials in the cases where 

0,1,2,3n  . 



Spiros Konstantogiannis            Journal for Foundations and Applications of Physics, vol. 6, No. 1 (2019) 

60 
 

3.1 The case n=0 

 The polynomial  0p x  is monic and of degree 0, thus it equals 1, and then from (11), we obtain 

that  0q n  vanishes, and then the quotient polynomial vanishes in this case. Then, the wave 

function (1), the energy (9), and the potential (12) take the form, respectively, 

   4 3 23 2
1

1
exp

4 3 2

g g
x A x x x g x

 
     

 
  (13)  

  2

1 2E g g     (14)  

 
       
 

6 5 2 4 3 2 2

3 3 2 2 3 1 2 1 3

3 1 2

2 2 2 2 3

2

V x x g x g g x g g g x g g g x

g g g x

        

 
  (15)  

The wave function (13) is energy eigenfunction of the PT-symmetric sextic oscillator (15), with 

the real energy (14). If 
1g  and 

3g  vanish, (13) – (15) give, respectively, the ground-state wave 

function and energy of the real, quasi-exactly solvable sextic oscillator for 0n  , in line with [12]. 

3.2 The case n=1 

 The polynomial  1p x  is monic and of degree 1, thus it has the form 

  1 0p x x p  ,  

and then (11) reads 

      3 2 2

3 2 1 0 02 2 1x g x g x g x q x p          

The coefficients of the same-degree terms in x  on both sides of the last equation must be equal, 

and thus 

 0 3p g   (16)  

  0 21 2q g   (17)  

  0 0 11 2q p g    

Substituting (16) and (17) into the last equation yields the condition 

 1 2 3g g g   (18)  

for the quotient polynomial to be real in the case 1n  . 

 If 3g  vanishes, from (18) we derive that 1g  vanishes too, while from (16) we see that 0p  also 

vanishes. Then, the wave function (1) reads 

   4 221
exp

4 2

g
x Ax x x

 
   

 
  

Also, by means of (17), the energy (9) reads 

 23E g  ,  

while the potential (12) takes the form 
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    6 4 2 2

2 22 5V x x g x g x     (19)  

Since the potential (19) is real and the wave function has only one node, it is the first-excited-state 

wave function [13]. We have thus obtained the first-excited-state wave function and energy of the 

real, quasi-exactly solvable sextic oscillator for 1n  , in line with [12]. 

 Generally, the condition (18) is satisfied if 
1g  and 

3g  are imaginary and 2g  is real, i.e. it is met 

by PT-symmetric polynomials  4g x . Substituting the condition (18) and 1n   into (12) yields 

 
     

 

6 5 2 4 3 2 2 2

3 3 2 2 3 2 2 3

2

3 2

2 2 4 2 5

2 1

V x x g x g g x g g x g g g x

g g x

       

 
 (20)  

The potential (20) is a complex PT-symmetric sextic oscillator that converts to the real sextic 

oscillator (19) if 3g  vanishes. Using the condition (18), the polynomial  4g x  is written as 

   4 3 23 2
4 2 3

1

4 3 2

g g
g x x x x g g x     ,  

and then, using also (16), the wave function (1) reads 

     4 3 23 2
3 2 3

1
exp

4 3 2

g g
x A x g x x x g g x

 
      

 
 (21)  

The wave function (21), which is odd under PT symmetry (since 3g  is imaginary), is energy 

eigenfunction of the oscillator (20), with energy given by (9), which, by means of (17) and (18), 

reads 

  2 2

2 3 23E g g g    (22)  

As noted, if 3g  vanishes, 1g  must also vanish for the condition (18) to be met, but the opposite 

does not necessarily hold, since if 1g  vanishes, then (18) is met if 3g  does not vanish, provided that 

2g  vanishes, and then the oscillator (20) reads 

   6 5 2 4 2

3 3 32 5 2V x x g x g x x g x     ,  

and it is again complex. The known energy eigenfunction of the previous PT-symmetric sextic 

oscillator is, by means of (21), 

     4 33
3

1
exp

4 3

g
x A x g x x

 
    

 
,  

 with zero energy, as seen from (22). 

3.3 The case n=2 

 The polynomial  2p x  is monic and of degree 2, thus it has the form 

   2

2 1 0p x x p x p   ,  
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and then (11) reads 

       3 2 2 2

3 2 1 1 0 1 02 2 2 4 2x g x g x g x p x q x p x p             

Equating the coefficients of the same-degree terms in x  on both sides of the previous equation 

then yields 

 
3 1 12 2g p p    (23)  

     3 1 2 0 02 2 4 2g p g p q     (24)  

    2 1 1 0 12 2 2g p g q p    (25)  

    1 1 0 02 1 2g p q p    (26)  

Solving (23) for 1p  yields 

 
1 32p g   (27)  

Substituting (27) into (24) and solving for 
0p  then yields 

 
 02

0 3 2

2

4

q
p g g    (28)  

Also, substituting (27) into (25) yields 

  0 3 2 3 12 2 2q g g g g    (29)  

To solve (29), we distinguish the cases 3 0g   and 3 0g  . 

 i. If 3 0g  , from (29) we see that 1g  also vanishes, and then the polynomial  4g x  is real. 

Then, from (27) we derive that 1p  vanishes too, while (28) reads 

 
 0

0 2

2

4

q
p g    (30)  

and then (26) is written as 

    2

0 2 02 4 2 8 0q g q   ,  

and solving for  0 2q  yields 

   2

0 2 22 2 2 2q g g      (31)  

Substituting (31) into (9) and taking into account that 1g  vanishes, we obtain the energies 

 
2

2 23 2 2E g g      (32)  

Also, substituting (31) into (30) yields 

 

 
  

 

2 2
2

2 2 2 2
2 2

0
22

2 22 2

2 22 1

2 22 2

g g g gg g
p

g gg g
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That is 

 
0

2

2 2

1

2
p

g g



  

Then, since 
1p  vanishes, we obtain the following two monic polynomials  2p x  

   2

2
2

2 2

1

2
p x x

g g
  


 (33)  

Both polynomials (33) are of even parity. Also, since 2 2

2 22g g  , then 
2

2 2 22g g g    , 

and then we obtain 
2

2 2 2 0g g    (from the inequality with the plus sign) and 
2

2 2 2 0g g    

(from the inequality with the minus sign). Thus, in (33), the polynomial  2p x  has two real roots, 

while the polynomial  2p x  is positive in , i.e. it has no real roots. Then, using (33) and that 
1g  

and 3g  vanish, the wave function (1) reads 

   2 4 22

2

2 2

1 1
exp

4 22

g
x A x x x

g g
  

   
         

  

while the potential (12) takes the form of the real sextic oscillator 

    6 4 2 2

2 22 7V x x g x g x      

Since the oscillator is real, its eigenfunctions are governed by the node theorem [13]. Then, the 

wave function  x  , which has two nodes, describes the second-excited state of the previous 

oscillator, with energy E  given by (32), while the wave function  x  , which is nodeless, 

describes the ground state of the same oscillator, with energy E E   given also by (32). We have 

thus obtained the ground and second-excited-state wave functions and energies of the real, quasi-

exactly solvable sextic oscillator for 2n  , in line with [12]. 

 ii. If 3 0g  , then solving (29) for  0 2q  yields 

   1
0 2

3

2 2 2
g

q g
g

    (34)  

Substituting (34) into (28) yields 

 2 2 1
0 3

32 2

g g
p g

g
    (35)  

Finally, substituting (27), (34), and (35) into (26) yields the condition 

  4 3 2 2 2

2 3 1 3 2 3 12 2 2 0g g g g g g g      (36)  
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This is the condition for the quotient polynomial to be real and the resulting PT-symmetric sextic 

oscillator to be non-real (
3 0g  ) in the case 2n  . Since 

1g  and 
3g  are imaginary and 

2g  is real, 

then setting 
1 1g ig  and 

3 3g ig , with 
1 3,g g  real, the condition (36) reads 

  4 3 2 2 2

2 3 1 3 2 3 12 2 2 0g g g g g g g     ,  

which is a real quartic equation in 
3g  – if 

2g  does not vanish – and depending on the domains of 

1g  and 
2g , it can have up to four real roots, which are then expressed in terms of 

1g  and 
2g . Then, 

from (27) and (35), we determine the coefficients of the polynomials  2p x  and then from (1), we 

obtain the respective wave functions, while from (34) we calculate  0 2q  and substituting into (9), 

we obtain the energies of the PT-symmetric sextic oscillators that are derived from (12). 

 We see that, in the case 2n  , the set of PT-symmetric sextic oscillators resulting from real 

quotient polynomials is richer than in the case 1n  . 

3.4 The case n=3 

 The polynomial  3p x  is monic and of degree 3, thus it has the form 

   3 2

3 2 1 0p x x p x p x p    ,  

and then (11) reads 

      3 2 2 2 3 2

2 3 2 1 2 1 0 2 1 06 2 2 3 2 6 3x p x g x g x g x p x p x q x p x p x p               

Equating the coefficients of the same-degree terms in x  on both sides of the previous equation 

then yields 

 3 2 23 2 3g p p    (37)  

     2 3 2 1 1 02 3 2 6 3g g p p p q      (38)  

     1 3 1 2 2 0 0 22 3 2 6 3g g p g p p q p      (39)  

    2 1 1 2 0 12 2 3 3g p g p q p     (40)  

    2 1 1 0 02 3p g p q p    (41)  

Solving (37) for 2p  yields 

 2 33p g   (42)  

Substituting (42) into (38) and solving for 1p  yields 

 
 022

1 3

33
3

2 4

qg
p g     (43)  

Substituting (42) and (43) into (39) and solving for 0p  yields 
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 3 032 3

0 1 3

7 315

6 12

g qg g
p g g      (44)  

Besides, substituting (42) and (43) into (40) yields 

      2 2 2 2

0 2 3 0 2 2 3 1 33 4 2 3 3 12 24 48 24 0q g g q g g g g g        (45)  

Also, substituting (42), (43), and (44) into (41) yields 

      2 3 2

3 0 2 3 1 3 0 3 1 2 1 37 3 30 18 12 3 72 36 72 0g q g g g g q g g g g g        (46)  

The equations (45) and (46) must be satisfied simultaneously. As in the case 2n  , we distinguish 

the cases 3 0g   and 3 0g  . 

 i. If 3 0g  , (45) and (46) read, respectively, 

    2 2

0 2 0 23 8 3 12 24 0q g q g     (47)  

  1 0 1 23 2 0g q g g   (48)  

Then, if 1g  does not vanish, (48) gives  0 23 2q g   and substituting into (47) yields 24 0  , 

which is impossible. Thus, if 3g  vanishes, then 1g  vanishes too. Then, (48) holds identically and we 

are left only with (47), which, if solved for  0 3q , yields 

   2

0 2 23 4 2 6q g g      (49)  

Then, substituting into (9), we obtain the energies 

 
2

2 25 2 6E g g      (50)  

Also, since 1g  and 3g  vanish, from (42) and (44) we respectively see that 2p  and 0p  also vanish, 

while, from (43), 1p  reads 

 
 02

1

33

2 4

qg
p


     

Then, we obtain the following two monic polynomials  3p x  

  
 02 2

3

33

2 4

qg
p x x x





  
     

  

,  

which are real and of odd parity, and so are the respective wave functions (1), since, in this case, 

the polynomial  4g x  is real and of even parity. Also, by means of (49), we derive that 

 

    
 

2 2
2

2 2 2 2
0 2 22

2

2 2

2

2 2

6 63 63

2 4 2 2 6

3

6

g g g gq g gg

g g

g g


     

      
  




,  
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and thus 

   2

3
2

2 2

3

6
p x x x

g g


 
  
  

  

Since 
2

2 2 26g g g    , then 
2

2 2 6 0g g    (from the inequality with the plus sign) and 

2

2 2 6 0g g    (from the inequality with the minus sign). Thus, the polynomial  3p x , 

corresponding to the energy E E   has three real roots, while the polynomial  3p x , 

corresponding to the energy E
, has one real root. Then, from (1), we obtain the wave functions 

     4 22
3

1
exp

4 2

g
x A p x x x   

 
   

 
,  

where  x   corresponds to the energy E
 and it has three nodes, while  x   corresponds to 

the energy E  and it has one node. The potential is obtained from (12) if we set 3n   and take into 

account that both 1g  and 3g  vanish, thus 

    6 4 2 2

2 22 9V x x g x g x      

This is a real sextic oscillator and by the node theorem [13], the above wave functions describe, 

respectively, its third and first-excited states, with energies being given by (50), respectively. We 

have thus obtained the first and third-excited-state wave functions and energies of the real, quasi-

exactly solvable sextic oscillator for 3n  , in line with [12]. 

 ii. If 3 0g  , then (46) is written as 

    
2

2 3 1 32 1 1 2
0 0

3 3

12 7230 18 3672
3 3 0

7 7 7 7 7 7

g g gg g g g
q q

g g

 
       
 

 (51)  

Subtracting (51) from (45) then yields 

    3 2 3 2

2 3 3 1 0 2 3 2 3 1 3 3 1 213 36 9 3 42 84 132 48 18 0g g g g q g g g g g g g g g        (52)  

If 3

2 3 3 113 36 9 0g g g g   , solving (52) for  0 3q  yields 

  
2 3 2

2 3 2 3 1 3 3 1 2
0 3

2 3 3 1

42 84 132 48 18
3

13 36 9

g g g g g g g g g
q

g g g g

    


 
 (53)  

Then, substituting (53) into (45), we obtain the condition 

 

   

   

2
2 3 2

2 3 2 3 1 3 3 1 2

2 3 2 3 2

2 3 2 3 3 1 2 3 2 3 1 3 3 1 2

2
3 2 2

2 3 3 1 2 2 3 1 3

21 42 66 24 9

2 3 13 36 9 42 84 132 48 18  (54)

13 36 9 3 6 12 6 0

g g g g g g g g g

g g g g g g g g g g g g g g g

g g g g g g g g g

    

        

      

 

Since 1g  and 3g  are imaginary and 2g  is real, we set 1 1g ig  and 3 3g ig , with 1 3,g g  real, and 

the condition (54) takes the form of the following real algebraic equation of degree eight in 3g  
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2
2 3 2

2 3 2 3 1 3 3 1 2

2 3 2 3 2

2 3 2 3 3 1 2 3 2 3 1 3 3 1 2

2
3 2 2

2 3 3 1 2 2 3 1 3

21 42 66 24 9

2 3 13 36 9 42 84 132 48 18  (55)

13 36 9 3 6 12 6 0

g g g g g g g g g

g g g g g g g g g g g g g g g

g g g g g g g g g

    

        

      

 

It is easily seen that the leading coefficient of the eighth-degree polynomial in 
3g  on the left-hand 

side of (55) is 
21296g . Then, depending on the domains of 

1g  and 2g , the equation (55) can have 

up to eight real roots, which are then expressed in terms of 
1g  and 

2g . Then, from (42), (43), and 

(44) we derive the coefficients of the polynomials  3p x  and then from (1), we obtain the 

respective wave functions, while from (53) we calculate  0 3q  and substituting into (9), we obtain 

the energies of the PT-symmetric sextic oscillators that are derived from (12). 

 We see that, in the case 3n  , the set of PT-symmetric sextic oscillators resulting from real 

quotient polynomials is richer than in the case 2n  . 

 

4. Conclusions 

 We have presented a method of constructing PT-symmetric sextic oscillators using quotient 

polynomials and demonstrated the binding relation between the reality of the energy spectrum of 

the oscillators and the PT invariance of the respective quotient polynomials. We have then used real 

quotient polynomials to derive PT-symmetric oscillators in the cases where the non-negative integer 

parameter n  ranges from 0 up to 3, and showed that the set of resulting oscillators, which contains 

the real, quasi-exactly solvable sextic oscillator as a special case, becomes richer as n  increases, a 

property rendering the system quasi-exactly solvable. As these oscillators are endowed with a 

special characteristic, it is natural to distinguish them from those resulting from non-real quotient 

polynomials and study them separately. 
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