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Abstract 
         An Ab-initio calculation in the framework of Density Functional Theory (DFT), as 

implemented in the FHI-aims package within Generalized Gradient Approximation (GGA) 

with the pbe parameterization was carried out in this work. Although methyl ammonium lead 

iodide (CH3NH3PbI3) has proven to be an effective photovoltaic material, there remains a 

main concern about the toxicity of lead.  An investigation into the possible replacement of 

CH3NH3PbI3 with CH3NH3GeI3 and CH3NH3GeBr3 as the active layer in perovskite solar cell 

was carried out. The electronic band structure, band gap energy and dielectric constants were 

calculated for CH3NH3GeI3 and CH3NH3GeBr3. The effect of temperature on linear thermal 

expansion coefficient and temperature dependence of lattice constant were studied in the 

temperature range of 273 to 318 K. Band gap shift due to lattice expansion was also studied. 

The dielectric constants of these materials were also determined. The energy band gap 

calculated for CH3NH3GeI3 and CH3NH3GeBr3 at their respective equilibrium lattice constant 

are 1.606 and 1.925eV respectively. A numerical simulation with some of these materials as 

the active layer in a perovskite solar cell was performed using General-purpose Photovoltaic 

Device Model (GPVDM) and the conversion efficiency of the resulting solar cell was 

obtained. Conversion efficiency of 10% and 8.4% were obtained for CH3NH3GeI3 and 

CH3NH3GeBr3 respectively. 

 

Keywords:  CH3NH3GeI3, CH3NH3GeBr3, DFT, FHI-aims, Energy-band gap, lattice constant, 

total energy, dielectric constants, linear-thermal-expansion-coefficient and Conversion 
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1. Introduction 

The research into new types of solar cells is driven by the need for cheaper, clean and 

sustainable energy. One promising route for departing from the traditional solar cells is the dye-

sensitized solar cell (DSSC). In this type of cell, the light is harvested by a sensitizer, which may be 
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a dye molecule or a semiconductor quantum dot attached to a wide-band-gap semiconductor of 

Nano-crystalline morphology, typically TiO2 [1]. Dye-sensitized solar cells have stood out among 

various photovoltaic devices owing to their low cost, simple fabrication procedure, environmental 

friendliness, and relatively high efficiency. Consequently, DSSCs are promising candidates for the 

next generation solar cells [2]. The research into new types of solar harvesters for solar cells is 

driven by the need increase their efficiency and make them more reliable. One promising material 

for replacing the dye molecule solar harvesters is the organic–inorganic hybrid perovskite. One of 

the backdrops of dye-molecule harvesters is the fact it exists in liquid form and can dry up unlike 

the organic-inorganic hybrid perovskites which are in solid form. The introduction of organic–

inorganic hybrid perovskites materials as light harvesters and charge carrier transporters; has 

improve the solar conversion efficiency of DSSCs; such DSSCs are called Perovskites Solar cells 

(PSC) or Solid-State Dye Sensitized Solar cells (SSDSC). Typically, the light-harvesting active 

layer is a hybrid organic-inorganic lead or tin halide-base material, the popular among is being 

methyl ammonium lead iodide, CH3NH3PbI3 [3]. Perovskite materials such as the methyl 

ammonium lead halides are cheap to produce and simple to manufacture. Solar cell efficiencies of 

devices using these materials have increased from 3.8% in 2009 [4] to a certified 20.1% in 2014, 

making this the fastest-advancing solar technology [3]. According to detailed balance analysis, the 

efficiency limit of perovskite solar cells is about 31%, which approaches the Shockley-Queisser of 

gallium arsenide which is 33% [5].Their high efficiencies and low production costs make perovskite 

solar cells a commercially attractive option. Although methyl ammonium lead iodide, 

(CH3NH3PbI3) has proven to be an effective active layer material, there remains a main concern 

about the toxicity of lead. Lead-based perovskites are a major issue that may prejudice 

implementation of any PSC technology, both regulation and common sense suggest that PSCs have 

to become lead free to deliver a sustainable technology [6]. Given the above developments, the 

determination of a lead free halide perovskite is of outstanding interest. 

To design an efficient solar cell device, a deep understanding of underlying material’s 

properties such as chemical composition, mechanical, electrical, and optical properties are required. 

Quantum mechanical approaches provide a deep understanding of properties of many body systems 

such as chemical composition, mechanical, electrical, and optical properties. Among the large panel 

of available theoretical approaches, the density-functional theory (DFT) has become 

overwhelmingly popular. Its success greatly relies on the existence of efficient computer numerical 

codes. In these numerical codes the input parameters can be adjusted. The overall principles of DFT 

are based on the Hohenberg–Kohn’s theorems [7]. DFT has a strong versatility especially in the 

description of the ground state properties of semiconductors and metals. Increase in computing 

power has afforded further capabilities in system’s size that DFT methods can handle.  

In this work, an investigation into the possible replacement of CH3NH3PbI3 with 

CH3NH3GeI3 and CH3NH3GeBr3 as the active layer in perovskite solar cell. The band structure 

analysis and energy bandgap calculation was performed. An investigation into the effect of 
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temperature on lattice constant (lattice expansion) and the effect of lattice constant (lattice 

expansion) on energy bandgap of the materials was carried out. Furthermore, the dielectric constant 

was determined. 

 

2.0  Methodology 
In this work ab-initio calculation in the framework of density functional theory DFT, as 

implemented in the FHI-aims package was performed [8]. The geometries of CH3NH3GeI3 and 

CH3NH3GeBr3 were built from the structural parameter obtained from existing literature[9] using 

Visualization for Electronic and Structural Analysis (VESTA) [10] and Avogadro software [11]. 

The generalized gradient approximation GGA with the blyp parameterization was employed for the 

evaluation of the exchange-correlation energy. Optimization of the followings configuration 

parameters; occupation type (Gaussian or Fermi), charge mix param, initial moment, and n max 

pulay was also performed. The Gamma-centered grid method has been chosen for sampling the 

Brillion zone.  Full relaxation of the atomic positions within the unit cell was performed following 

the Broyden-Fletcher Goldfarb-Shanno (BFGS) optimization algorithm. Optimal lattice constant 

was also determined for each structure. The k-paths (߁ െ ܺ െܯ െ ߁ െ ܴ െ ܯ|ܺ െ ܴሻ[12]was used 

in the band structure analysis. Energy band gap were calculated for the optimized geometries along 

with the optimized configuration parameters using the FHI-aims code. The next procedures was 

only performed for those materials that gave a promising energy band gap. 

 To determine of how the vibrational band structures and the associated free energies, change 

with the volume of materials. The optimal lattice constant of the materials were determined by 

finding the minimum of the total energy ܧி்ሺܸሻ and ܨሺܶ, ܸሻ by using the Birch-Murnaghan’s 

equation of state[13]. Though, in the canonical ensemble, the relevant thermodynamic potential that 

needs to be minimized is the free energy ܨሺܶ, ܸ	ሻ which is given by: 

,ሺܶܨ ܸ	ሻ ൌ ி்ሺܸሻܧ  ,ሺܶܨ ܸሻ																																				ሺ12ሻ 
 To account for the volume dependence of ܨሺܶ, ܸ	ሻ, the total energy, ܧி்ሺܸሻ and free energy, 

,ሺܶܨ ܸሻ were calculated for a series of lattice constants. Eq. (12) was then evaluated and 

minimized using the Birch-Murnaghan’s Equation of states, the phonopy program package and its 

FHI-aims interface phonopy-FHI-aims are used here. A FHI-aims python script titled: 

Compute_ZPE_and_lattice_expansion.py [14] is used to perform the above procedure, this script 

requires the following inputs; optimal (equilibrium) lattice constant, the temperature range (0 to 

350K) and geometry information. The script gives two output files; one contains temperature, the 

lattice constant and the lattice expansion coefficient and the other contains the equilibrium lattice 

constant computed with and without zero point energy (ZPE).and bulk modulus.  

The investigation of the temperature dependence of the electronic band gaps of materials 

was carried out using a second python script titled: Compute_bandgap_at_different_volumes.py. 

Here electronic band structure calculations were performed for geometries constructed using the 

lattice constants generated from by the first script for temperature range of 273 to 318 K. This script 
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gives an output file that contains both the lattice constants and the energy bandgap as a function of 

temperature. To obtain the linear dielectric tensor in FHI-aims the tag compute_dielectric is used. It 

calculates and output the component of the imaginary and real part of the inter-band and intra-band 

contribution to the linear dielectric tensor. 

A numerical simulation was carried out using these materials as the active layer in a 

perovskite solar cell, this was achieved by the use of General-purpose Photovoltaic Device Model 

(GPVDM). GPVDM is a free general-purpose tool for simulation of light harvesting devices. The 

model solves both electrons and holes drift-diffusion, and carrier continuity equations in position 

space to describe the movement of charge within the device. The model also solves Poisson's 

equation to calculate the internal electrostatic potential. The software gives an output that contains 

the Current-Voltage (I-V) characteristic curves [15]. The simulation was run for an active layer 

thickness of 3 ൈ 10ି݉ and device temperature of 330 K. 

 

3.0 Results and Discussion 
3.1 Lowest unoccupied molecular orbital (LUMO), Highest occupied molecular 

orbital (HOMO)and Bandgap 

 The LUMO, HOMO and bandgap calculated is tabulate below along with reported values 

where available. The LUMO level for CH3NH3GeI3 is above the CBE of most anode materials (e.g. 

TiO2 and SiO2), this indicate that it can serve as good active layers, CH3NH3GeBr3 on the other 

hand show good promise as its LUMO level is just below that of the anode materials. The bandgap 

of CH3NH3GeI3 obtained in this work (i.e.1.606 eV)is close to the reported bandgap range for 

CH3NH3PbI3; 1.662 eV [16] and 1.61 eV [17].The bandgap obtained for CH3NH3GeI3in this work  

is 4.29 %  higher than the reported value of 1.54 eV [18]. Figures 1(a) and1 (b) shows that the band 

gaps of materials increase with increasing lattice parameter like in most perovskite materials, 

contrary to most general semiconductors like Si and GaAs [16]. 
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Fig. 1.Graph of bandgap against lattice constant for: (a) CH3NH3GeI3 (b) CH3NH3GeBr3 
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-5.21226324 

 

1.606 1.54  [18] 

2.0  [19] 

CH3NH3GeBr3 -3.85925193 -5.78400997 1.925 - 

1.6046

1.6047

1.6048

1.6049

1.605

1.6051

1.6052

1.6053

1.6054

5.922 5.923 5.924 5.925 5.926 5.927

B
an

dg
ap

 (
eV

)

lattice constant(Հ) 

1.952

1.9522

1.9524

1.9526

1.9528

1.953

1.9532

1.9534

1.9536

1.9538

5.932 5.934 5.936 5.938 5.94 5.942

B
an

dg
ap

 (
eV

)

lattice constant(Հሻ

(a) 

(b) 



Abdulsalam et al                     Journal for Foundations and Applications of Physics, vol. 6, No. 1 (2019)	

81 
 

3.2 Lattice Constant  

The lattice constants determined for each of the materials are listed in Table 2. There were little 

available data on lattice parameters of CH3NH3GeI3and CH3NH3GeBr3. Although the lattice 

constant obtained in this work was not compared with other reported values, the lattice constant 

increases from Br to I. A similar trend was found from Sn and Pb serials [16]. 

 

Table 2. Lattice Constant 

Material Lattice Constant(Հ) 

From Single point 

calculation 

From phonopy 

without ZPE 

From phonopy with 

ZPE 

CH3NH3GeI3 5.933 5.876 5.907 

CH3NH3GeBr3 5.833 5.877 5.894 

 

3.3 Linear thermal expansion 

Linear thermal expansion coefficient,ߙ given in Eq. (11) was plotted against temperature for 

each of the materials, as shown in Figures 2(a), in figure 2(b) the same graph was plotted for more 

clarity for temperature range of 0 to 20 K. The change in lattice constant with temperature is shown 

in figure 2.Figure 2(a) shows that the linear thermal expansion coefficient does not change 

constantly with temperature, and it is negative for some very low temperatures, but in Figure 2(b) 

the negative expansion (contraction) can be seen to occur between the temperature ranges of 0 to 3 

K. The temperature range at which the negative expansion occurs is the same for both materials. 

There is a constant increment of the expansion coefficient at temperatures above 3K. The negative 

expansion observed for this materials is similar to those observed in some semiconductors such as 

Germanium, Silicon, Diamond and Gallium Arsenide [20].The lattice constant expands with 

increase in temperature but with contraction at very low temperatures, this is obvious because of the 

negative linear thermal expansion observed in figure 2(b). 



Abdulsalam et al                     Journal for Foundations and Applications of Physics, vol. 6, No. 1 (2019)	

82 
 

 

 

                                          Fig. 2.Graph of Linear thermal expansion coefficient against temperature for:  

(a) CH3NH3GeI3  (b) CH3NH3GeBr3 
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Fig.3 Graph of Lattice constant against temperature for: (a) CH3NH3GeI3 (b) CH3NH3GeBr3 
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Material 
ܴ݁ሾ߳ሺ߱ ൌ 0ሻሿ 

[100] [010] [001] [111] 

CH3NH3GeI3 2.26 2.27 4.83 5.79 

CH3NH3GeBr3 1.72 1.72 3.73 4.46 

 

3.5  Current-Voltage (I-V) Characteristic Curves  
 Current-Voltage (I-V) characteristic curves shown in figure 5 were obtained from the 

GPVDM software by using each of the material as the active layer in a perovskite solar cell.  The 

current and voltage characteristics of a particular photovoltaic cell gives a detailed description of 

its solar energy conversion ability and efficiency. Knowing the electrical I-V characteristics of a 

solar cell is important in determining the device’s output performance and solar efficiency. The 

maximum point voltage ൫ ܸ൯ and maximum point current ൫ܫ൯ are deduced from the Current-

Voltage (I-V) characteristic Curves for each of the materials, subsequently the maximum power 

point and efficiency were calculated these are shown in Table 4. 

 

 

Table 4  Solar cell parameters 

Material ܸ 

(V) 

  (A) Maximum powerܫ

point (MPP) 

ܲܲܯ ൌ ܸ ൈ  ܫ

Conversion 

Efficiency(ߟሻ(%ሻ 

ߟ ൌ
ܲܲܯ

ݏݐݐܽݓ1000
ൈ 100% 

CH3NH3GeI3 0.5 200 100 10 

CH3NH3GeBr3 0.56 150 84 8.4 

 

 

The conversion efficiency (ߟሻ of CH3NH3GeI3 in this work was found to be higher than that of 

CH3NH3GeBr3. The conversion efficiency forCH3NH3GeI3and CH3NH3GeBr3arelower than that of 

CH3NH3PbI3 (14.4%) [22] by 30.5% and 41.6% respectively. 
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Fig.5.Current-vintage (I-V) curve  using each of the materials as the active layer for:  

(a) CH3NH3GeI3 (b) CH3NH3GeBr3 
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4.0   Conclusion  
    All the calculations done in this work were based on Density Functional Theory method as 

implemented in FHI-aims code. FHI-aims code input parameters were optimized before the actual 

calculation and estimation were done. The bandgap of CH3NH3GeI3 calculated in this work differ 

from reported result by 4.29 %, the band gaps of materials increase with increasing lattice parameter 

like in most perovskite materials. The trend observed in the lattice constant of CH3NH3GeI3 and 

CH3NH3GeBr3 is similar to that observed in other perovskite materials.  Also the phonopy program 

package and its FHI-aims interface correctly predict the effect of temperature on linear thermal 

expansion coefficient and lattice constants of the materials, here the temperature dependence 

observed agrees with other established views. The conversion efficiency obtained gives an 

indication that these materials can be a good active layer candidate in perovskite solar cells. This 

can be verified further with an experimental work on these materials. 
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