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Abstract 

 A semi-classical model of leptons is presented on the assumption that they are stable 

equilibrium states of spherical bubble like extended structures with negative pressure of a 

false vacuum created inside and balanced by an outward stress due to vacuum polarization 

originating from the charge residing on the surface. The idea is a semiclassical analog of the 

Poincare model of the electron, where the outward classical electromagnetic stress is replaced 

by the stress due to vacuum polarization. Here the electron carries a bare mass (energy) due to 

negative pressure or equivalently a positive energy density inside and QED electromagnetic 

self-energy and both dependent on a cut-off radius R. Minimization of total energy with 

respect to R, yields a relation connecting equilibrium radius, negative pressure P, 

renormalized fine structure constant and lepton mass. Assumption that the maximum possible 

value of P corresponds most massive tau lepton is Planck pressure, enables determination of 

the renormalized fine structure constant and input of masses of the electron and muon 

determines corresponding internal negatives pressures and lepton radii. Tau lepton size is of 

the order of the Planck length and the muon and the electron are two and three orders of 

magnitude larger. Model suggests that the lepton flavor is an attribute associated with three 

different phases of a false vacuum. 
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1. Introduction 

 Despite tremendous success of quantum electrodynamics (QED) and unified renormalizable 

gauge theories [1], calculation of the electron self-energy continues to remain a formidable problem. 

An ambition of both classical and quantum physics has been to understand all properties of the 

electron on basis of the electromagnetic force. When Maxwell formulated his theory of 

electromagnetism to unify optics and electricity, an issue of paramount importance that cropped up 

as the next step has been explaining the structure of the electron. After Thompson’s discovery of the 
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electron and measurement of its charge and mass, the electric charge could not be considered as a 

fluid. Instead, the electron appeared as the smallest existing unit of the charge as well as the mass. 

The classical electron theory of Abraham and Lorentz was an ingenious effort in relating electron 

mass to its charge [2-3]. As a point charge is an obvious impossibility in classical electrodynamics, 

the electron was endowed with a finite size (radius) determined by equating the electrostatic self-

energy to the mass energy Mc
2
 of special theory of relativity. Abraham developed an elaborate 

scheme to derive the inertial mass of the electron as a radiation reaction, however there was a 

discrepancy of 4/3 in the proportionality factor of  between inertial mass and the mass ( E/c
2
 ) 

associated with self-energy E. The other problem of the classical electron was its instability, a 

consequence of Earnshaws’s theorem [4] according to which a system of electric charges cannot be 

held in equilibrium purely by electromagnetic forces. The above problems of the classical electron 

were resolved by Poincare [5] who introduced non-electromagnetic cohesive forces (Poincare 

stresses) to stabilize the electron. Poincare’s stress was equivalent to a negative pressure, however 

Poincare’s idea did not receive much attention as it seemed arbitrary and non-electromagnetic 

forces, apart from weak gravity were not palatable to the physicists at the time.  

After advent quantum mechanics, it became clear that classical theory of the electron cannot be 

correct, because the electron classical radius re = e
2
/4πεοMc

2
 is nearly three orders of magnitude 

smaller than its Compton wavelength   λe =  ħ/M c   (i.e. re= 2.8 x 10
-15

 m, λe = 2.4 x 10
-12

 m). In 

this situation vacuum polarization needs to be taken into account in any meaningful model of the 

electron. The first few attempts of constructing models of the electron on quantum mechanical basis 

were frustrating because the quadratic divergences turned out to be worse than in the classical 

theory. The quadratic divergence originated from one particle perturbation theory calculation. 

Weisskopf [6] showed that a calculation based on Dirac’s electron-positron theory gives much less 

serious logarithmic divergence in all orders of the perturbation theory. Subsequent calculations of 

Feynman [7] , Schwinger [8] and others who used more modern QED, confirmed Weisskopf’s 

result and vacuum polarization contribution δM to the electron mass M was shown to be  given by 

the well known expression,   

 

                 (1) 

 

where α =  fine structure constant, Λ =  cut-off parameter   and O (α n
 ) denote the n th order 

correction. The proportionality of the correction to mass of the electron itself guarantees 

preservation of chiral symmetry in the limit of zero lepton mass [1]. The cut-off parameter is also 

equivalent to a length R given by R = (ħ/Λc). However, there was no point electron limit and the 

problem would not be resolved by full incorporation of higher order terms. The above 

unsatisfactory feature in QED calculation of electron self-energy appears to be an indication that 

non-electromagnetic forces are operative in the electron structure at very small scales of length. 

Most models of electron invoking non-electromagnetic forces attribute a finite size to the electron 
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[9-11].  As it is natural to believe that the non-electromagnetic force involved is gravitation, many 

efforts have been made to invoke gravity in regularization of the electron self-energy and analyze 

gravitating charged spheres [12-20]. A problem of the QED approach to electron self-energy is that 

unlike in the classical theory, the question of electron stability has been completely overlooked. In 

the Poincare’s classical model of the electron, electromagnetic and non-electromagnetic 

contributions to self-energy are functions of its radius, minimization of the sum of two contributions 

gives a unique value for the radius, corresponding to the energy of the stable spherically symmetric 

configuration. 

After discovery of the muon, problem of electron self-energy was further complicated by the 

existence of another heavier electron like particle. Attempts were made to interpret muon as an 

excitation of the electron without much success in correctly relating its mass to the electron mass 

[10]. Following the discovery of the tau-lepton and development of the standard model, the 

naturalness of the existence of three leptons was evident, however the origin of their masses remain 

elusive. The Higgs mechanism imply that the existence of charged massive leptons but does not hint 

a procedure for computation of their masses. It merely implies that charged leptons need to possess 

a mass proportional to the vacuum expectation value of the Higgs Field. 

In this work a semi-classical model of leptons is presented suggesting that the stress of 

electromagnetic vacuum polarization of an elementary charged object ‘pulls out’ the true vacuum, 

to a false vacuum of negative pressure balancing the outward electromagnetic stress. The three 

lepton flavors corresponds three phases of the false vacuum with different energy densities.   

 

2. Discussion   

 In the Poincare model of the electron charge Q is considered to be uniformly distributed over a 

massless spherical shell of radius R. Because of the  charge surface density s = Q/4πR
2
 , the shell is 

subject to an outward electrostatic stress s
2/2ε0 , if the interior of sphere is endowed  with a negative 

pressure P , the condition of equilibrium is , 

 

 

 

or equivalently, 
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In a modern context, the first term in (4) can be interpreted as the work done against the pressure 

of the true vacuum (natural vacuum) in creating a false vacuum within the bubble or equivalently 

the false vacuum possessing a negative pressure. The expression (4) take a minimum value 

(corresponding to dW/dr = 0, d
2
W/dr

2
 > 0) when the condition (3) is satisfied, giving self-energy of 

the electron as,  

 

 

                                                                

The quantity under the square bracket in (5) is identical to the second term in (4), the self-energy 

due to the charge or equivalently the energy of the electric field. Thus total energy of the system is 

4/3 times the electrostatic self-energy and if inertial mass is interpreted as W/c
2
, the famous 4/3 

problem in the Abraham theory is resolved. The theory of Poincare did not receive much attention, 

because Poincare interpreted W(r) in (3) as electromagnetic energy, although in fact it included a 

non- electromagnetic contribution of 1/3[Q
2
/8εοπ r].  Furthermore non-electromagnetic forces apart 

from weak gravity were foreign to physicists at the time. The   Poincare stress tensor is defined as 

[21], 

 

 

Eqn. (5) was derived considering the rest –frame situation. However, Poincare model incorporating 

(6) and electromagnetic stress tensor is Lorentz invariant [22]. Eqn. (6) resemble the energy 

momentum tensor Tµν  of a perfect fluid expressed by, 

 

 

with   P = - ρ  ,where Uµ  is the velocity field. Scalar fields also satisfy the condition P = - ρ  under 

certain conditions.  

Motivated by the Poincare model of the electron, we consider a spherical bubble of radius R with 

a constant negative pressure P inside and charge equal to the electronic charge distributed over the 

surface.  The self-energy (mass) M of  an elementary object of radius  is constituted of  two parts ; 

(i) a non- electromagnetic contribution  (4π/3c
2)r3

P due to a negative pressure and (ii) the energy 

due to electromagnetic vacuum polarization  in the region  out-side the spherical surface given by 

the QED expression (1)  dependent on the cut-off radius R = ħ /Λc. Thus the total energy (mass) of 

the system is, 

 

 

 

 Expression (8) is analogous to (4) with the classical electromagnetic energy of the charge 

distribution replaced by the QED expression for the electron self-energy.  
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The quantity M(R) given by (9) is extremal (dM/dr = 0) when 

R =  [ ( 3αc
2
M )/(8π2

P) ]
1/3

  

 

From (8) and (9) it also follows that d
2
M/dr

2
 = M/2R

2
 at dM/dr = 0 showing that the equilibrium is 

stable. Eliminating P between (8) and (9), the radius of the bubble can be expressed as,  

 

 

 

Similarly eliminating of R between (8) and (9), the stable values of mass M can be written as, 

 

 

 

Mass M depends on parameters P and α , the latter should indeed be renormalized value.  Energy 

densities and pressures P are generally expressed in terms of a mass scale µ via the relation, 

                                        P  =  µ4
c

5
 ħ

-3
                                         (12) 

Substituting (12) into (11) we represent lepton masses Ml 

 

 

 

As there are three leptons l (= e, mu, tau), we need to assume that there are three characteristic 

mass scales µl (equivalently pressures Pl of three phases of the false vacuum) corresponding to each 

lepton. If the maximum possible mass scale, the Planck scale is assumed to correspond to the tau 

lepton, then Ml = Mτ  = 1.777 GeV/c
2
 when µl  =  µp =  Planck mass = 2.435x 10

18
 GeV/c

2
.  

Insertion of these values in (13) and solution of the transcendental equation (13) for  α yields 

1/ α  ≈  26.3. At Planck energies, the fine structure constant would be heavily renormalized and 

probably there are no constraints to rule out the above value [23-24], which might be infinite energy 

limit of the fine structure constant. From (13), the scales corresponding to the other two leptons are 

µmu = 1.45 x 10
17

 and µe  = 6.7 x 10
14

. From (10) it follows that the radii leptons are Re = 2.4 x 10
-31

 

m, Rmu = 9.3 x 10
 – 33

 m, Rtau = 2.8 x 10
 – 35

m. According to model, the tau lepton size is of the order 

of the Planck length (~ 1.6 x 10
-35 

m), muon and electron are larger by nearly one and two orders of 

magnitude respectively. The first term in (1) is non-electromagnetic energy of the lepton. When (9) 

is substituted this term reduces to αΜ/2π. Thus ~ 99.4 % of the self-energy of lepton is 

electromagnetic in origin.  The parameters µl could be considered as vacuum expectation values of 

scalar fields, when this parameter vanishes, lepton masses remain zero. 

The radial oscillation angular frequency ω of the bubble in the equilibrium position is  

ω 2 =  [c2
 d

2
M/dr

2
]/M = c

2
/2R

2
.  Using (10) we obtain, 

ħω  =  Mc
2
Exp ( 2π/3α −  7/12)                                                                                                                                                                         (14) 
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Thus the excitation energy is of the order of 10
23

 times mass of the respective leptons and 

practically, leptons have no excited states. Tau and mu are not excited states of the electron. 

The existence of three leptons with same charge but different masses suggests that the mass is 

determined by another parameter in addition to the charge. In terms of the present model, the other 

parameter is value of negative pressure inside the bubble defined in terms µl by (13). Thus flavor 

corresponds to existence of the phases of the false vacuum, suggesting that flavor is an attribute of 

the vacuum structure. 

 

3. Conclusion 

The idea presented here is analogous to the Poincare model of the electron, where the negative 

pressure inside a charged bubble is balanced by an outward stress. However, unlike in the latter case 

the outward stress originate from vacuum polarization. Energy of the entity is constituted of two 

terms. The energy due to negative pressure (i.e. positive energy density ) proportional to the volume 

of the bubble and energy of vacuum polarization taken to be the QED self-energy expression. 

Minimization of total energy yields the equilibrium condition. Lepton masses depend on 

renormalized fine structure constant and a mass scale defining the negative pressure. Existence of 

three leptons with different flavors is attributed to existence of three phases of the false vacuum 

corresponding to different negative pressures.  The assumption that the negative pressure associated 

with the heaviest lepton (tau) is Planck pressure yields the renormalized value of the fine structure 

constant at extreme energies. The radii of the leptons are evaluated.  Tau lepton size is of the order 

of the Planck length (~ 1.6 x 10
-35 

m), muon and electron are larger by nearly one and two orders of 

magnitude respectively.  Thus leptons are effectively point like particles and the model does not 

contradict QED. An experimental upper limit for the electron radius is of the order 10
-23

m [25].The 

model assumes that the electron structure possess spherical symmetry. A recent experiment 

indicates that vacuum polarization field around the electron is indeed spherically symmetrical and 

the electron carries no dipole moment [26]. 
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