
Science Front Publishers                Journal for Foundations and Applications of Physics, vol. 2, No. 1 (2015) 

(sciencefront.org)                                                                                                                           ISSN 2394-3688 

1 
 

Effect of streaming and temperature anisotropy in 

Wiedemann-Franz law for collisional magnetoplasma 
 

 

G. Nath  

 

Department of Physics, 

Veer Surendra Sai University of Technology, 

Burla, Sambalpur, Odisha, INDIA 

Electronic mail: ganesh_nath99@yahoo.co.in 

 

(Received 15 January 2015, Published 20 March 2015) 

 

Abstract 
The presence of beam in a two component fully ionized electron-ion magneto plasma 

entails streaming or mass motion of plasma species causing 0V
r

. P
r

 energy dissipation where 0V
r

 

represents streaming velocity. The collisional diffusion transport coefficients are significantly 

modified in presence of the streaming velocity 0V
r

. Further these coefficients are also found to be 

modified owing to anisotropy in plasma species temperature. The modified transport coefficients 

results in significant modifications of Wiedemann-Franz ratio (k/σ) in terms of 0V
r

 and  
⊥TT /||

, 

where ||T  and ⊥T represent the temperature along and perpendicular to the direction of B
r

field.  
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1. Introduction 
Recent advances [1-3] in the study of collisional diffusion and transport in a two component fully 

ionized (electro-ion) magneto plasma having anisotropies in temperature ( ||T and ⊥T ) and streaming velocity     

( 0V
r

) has aroused current interest in studying the Wiedemann-Franz law for gaseous plasma. 

Wiedemann and Franz (1853) gave the empirical law that ratio of the thermal and electrical 

conductivities (k/σ) at a particular temperature is same for all metals. Lorentz (1872) showed that the ratio K/σ 

is proportional to the absolute temperature. Experimentally it is observed that the law holds good at ordinary 

temperature but fails at low temperature owing to the contributions due to phonons. Paul Drude (1900) proposed 

the free electron model and explained Wiedemann and Franz law assuming that the free electrons undergoing 

collisions with atoms of the metals are in thermal equilibrium with Maxwell – Boltzmann velocity distribution 
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and calculated that 
T

K

σ
= 

2

2

2

3

e

k
= 1.11× 10

8−
 W. Ω /k

2
, although the corrected value is calculated as 

T

K

σ
=

2

22

3e

hπ
=2.45× 10

10−
W. Ω /k

2
based on Fermi Dirac statistics. 

In the present paper we attempt to study the behavior of the Wiedemann-Franz ratio (K/σ) for a fully 

ionized singly charged electron-ion magneto plasma although unlike the metals, an increase in the electrical 

conductivity causes a decrease in thermal conductivity in a plasma. We further study the dependence of this 

ratio on the streaming anisotropy [2]  as well as the anisotropy in plasma temperature [3] and compare the 

results with the isotropic ones [4] both quantitatively and qualitatively. 

 

2. Basic Theory and Derivations 
It is well known that fully ionized plasma gets diffused across a magnetic field by means of interparticle 

collisions when a transverse density gradient exists [5]. The presence of a temperature gradient, in addition to 

the density gradient in the same direction causes the thermal energy transport along the cross field direction. The 

relevant Boltzmann transport equation is solved by Rosenbluth and Kaufmann [4] to yield expressions for the 

electrical resistivity ( ⊥η ) and the thermal conductivity K as, 
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Where N is density, C is speed of light and 0θ is minimum angle of scattering [2]. 

If the ion mass ( )
i

m  > > the electron mass ( )
e

m , then ratio of the thermal conductivity to the electrical 

conductivity yields 
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where the Coulomb logarithm takes appropriate values for weakly coupled plasma [3]. It is worthwhile to note 

that the Wiedemann-Franz ratio ⊥σ/K is inversely proportional to (kT)
2

for a gaseous plasma where as for 

metals it is found to be directly proportional to the thermal energy kT  or the absolute temperature T . However, 

for constant temperature, 
σ

K
 remains constant although it is different from that of the metal owing to the 

appearance of ( )2
kT term in the denominator and the squared density term ( )2N  in the numerator. Note that for 

metals ⊥σ/K is independent of the density term. However, on keeping the values of N and the magnetic field 

B
r

 constant at a constant temperature, the ratio ⊥σ/K  assumes a constant value. However, this value decreases 

rapidly with increase in .kT  

Mohanty and Baral [2] solved the Boltzmann transport equation with an equilibrium distribution function for a  

plasma having anisotropy is streaming velocity oV
r

. 
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It is revealed that the electrical and thermal conductivities are modified as,  
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On simplification the Wiedemann- Franz ratio is derived as  
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The comparison reveals that the ratio 
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90  times the ratio for non-streaming 

plasma. Note that in our streaming model, the streaming energy j
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Likewise in our early work [3] 
 
we have attempted to derive the expressions for modified diffusion 

transport coefficients in a fully ionized singly charged two component magnetoplasma at the onset of an 

anisotropy in plasma temperature ( )⊥≠TT || , where ||T  and ⊥T represent  the temperature along and 

perpendicular to the direction of B
r

field. The relevant Maxwellian equilibrium distribution function is, 
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On solving Boltzmann-transport equation in a Chapman-Enskog approximation method following our early 

work [3], it is further revealed that both the conductivities are functions of the temperature ratio 
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The ratio of the conductivities is calculated as  
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This equation involves T|| /T⊥ dependence of the Wiedemann-Franz ratio. 

 

3. Discussion 

The dependence of the Wiedemann-Franz ration (K/σ
⊥

) on the temperature for an isotropic two component 

electron-ion magneto plasma is derived in Eq. (3). The Results are quantitatively estimated for various 

temperatures and are displayed in Fig.1. It shows that ratio almost remains constant within the range from 100ev 

–800ev. It is instructive to note that in contradistinction to the Wiedemann-Franz law for metallic conductors, 

the gaseous plasma shows a decrease in electrical conductivity, the gaseous plasma shows a decrease in 

electrical conductivity with increase in thermal conductivity in the lower thermal regimes and remains 

dependant on the plasma species density. However, it remains constant for constant temperature at particular 

value of the magnetic field B
r

 and the plasma species density (N).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1. Variation of (K/σ ⊥ ) with  thermal energy (kT ) for isotropic electron ion magneto-plasma. 

 

Towards higher thermal regimes K/σ ⊥  drops because of large decrease of the thermal conductivity (K). In 

Fig. 2 and Fig. 3 qualitative results are plotted to show that the ratios are dependent on the streaming velocity      

( 0V
r

) while Fig. 4 shows the variations of K/σ⊥ for various temperature ratios T|| / T⊥. The results are of 

importance for study the electrical and thermal properties of plasma relevant to Laboratory plasma and plasmas 

in space and astrophysical situations. 
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Fig.2. Variation of 
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Fig.3. Variation of 
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Fig. 4 Variation of  ( )⊥σ/K  with thermal energy ( )⊥kT  for various temperature ratios 
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